
About an exercise on modular multiplication
ho boon suan

17 July 2025, updated 18 July 2025

The following exercise was added to the second edition of Volume 2

of The Art of Computer Programming in August 1995:

Exercise 3.2.1.1–3. Many computers do not provide the ability to divide a
two-word number by a one-word number; they provide only operations on
single-word numbers, such as himult(x, y) = ⌊xy/w⌋ and lomult(x, y) =
xy mod w, when x and y are nonnegative integers less than the word
size w. Explain how to evaluate ax mod m in terms of himult and lomult,
assuming that 0 ≤ a, x < m < w and that m ⊥ w. You may use
precomputed constants that depend on a, m, and w.

Knuth provides the following answer: “Let a′ = aw mod m, and let
m′ be such that mm′ ≡ 1 (modulo w). Set y ← lomult(a′, x), z ←
himult(a′, x), t ← lomult(m′, y), u ← himult(m, t). Then we have
mt ≡ a′x (modulo w), hence a′x−mt = (z− u)w, hence ax ≡ z− u
(modulo m); it follows that ax mod m = z− u + [z < u]m.”

I will try to give some motivation for his answer (though ultimately
like much of math it involves magic that one just gets used to). We
want to find ax mod m, but it is costly to divide by m. The only
affordable division operation we have is division by w via the himult
operation. As such, we try the multiplication-by-one trick, which
gives

ax mod m =
(

ax · w
w

)
mod m =

(aw)x
w

mod m =
a′x
w

mod m,

where a′ := aw mod m. (To be precise, we are multiplying by the
inverse w−1 modulo m, which is justified as m ⊥ w.)

Since m ⊥ w, we have

a′x
w
≡ a′x−mt

w
(modulo m)

for any integer t. Thus, if we can choose 0 ≤ t < w such that

−m ≤ a′x−mt
w

< m and a′x ≡ mt (modulo w), (∗)

we would be done, since we would then have

Here we are actually dividing by w in
the rationals rather than multiplying by
the inverse w−1 modulo m; this is fine
precisely since a′x ≡ mt (modulo w).

ax mod m =
a′x−mt

w
+[a′x < mt]m =

⌊
a′x
w

⌋
−
⌊

mt
w

⌋
+[a′x < mt]m.

Now a′x = wz + y where z ← himult(a′, x) and y ← lomult(a′, x),
so a′x ≡ y (modulo w). Thus our choice of t must satisfy mt ≡ y
(modulo w), which leads us to set t← lomult(m′, y) where m′ is such
that mm′ ≡ 1 (modulo w). One can then check that (∗) holds; setting
u← himult(m, t), we conclude that

ax mod m = z− u + [z < u]m.

Remarks. The ideas in this exercise
lead to Montgomery multiplication, where
one works with the Montgomery forms
xw mod m of residue classes x mod m
instead of working with x mod m.
See Peter L. Montgomery, Mathemat-
ics of Computation 44 (1985), 519–521,
doi:10.1090/S0025-5718-1985-0777282-X.
For an overview of modern algo-
rithms for modular multiplication, see
Section 2.4 of Richard P. Brent and
Paul Zimmermann, Modern Computer
Arithmetic (Cambridge University Press,
2010). A near-final draft is available
online at https://members.loria.fr/

PZimmermann/mca/mca-cup-0.5.9.pdf.
Thanks to Way Yan Win for helpful

comments on an earlier version of this
note.

https://en.wikipedia.org/wiki/Montgomery_modular_multiplication
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf
https://members.loria.fr/PZimmermann/mca/mca-cup-0.5.9.pdf

