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0. Appetizer: Triangles and Equations

0.1. Schur’s Theorem

Exercise 0.1.5. We first induct on r to prove that Nr = 1 + r! ∑r
i=0

1
i! .

We have
N1 = 3 = 1 + 1!

( 1
0!

+
1
1!

)
,

and for the inductive step with r ≥ 2 we have

Nr = r(Nr−1 − 1) + 2

= r
(

1 + (r − 1)!
r−1

∑
i=0

1
i!
− 1

)
+ 2

= r!
r−1

∑
i=0

1
i!
+ 2

= 1 + r!
r

∑
i=0

1
i!

.

To prove that Nr = ⌈r!e⌉, we must show that Nr − 1 < r!e ≤ Nr.
The first inequality amounts to

r!
r

∑
i=0

1
i!
< r!e,

which is clear from the fact that e = ∑∞
i=0

1
i! . The second inequality

follows from the fact that

∞

∑
i=r+1

1
i!
=

1
r!

( 1
r + 1

+
1

(r + 1)(r + 2)
+ · · ·

)
≤ 1

r!

( 1
r + 1

+
1

(r + 1)2 + · · ·
)
=

1
rr!

≤ 1
r!

.

Exercise 0.1.8. It is convenient to introduce the multicolor Ramsey This is a standard argument; see
for example https://en.wikipedia.

org/wiki/Ramsey%27s_theorem#Proof.
number Rr(k1, . . . , kr), defined as the smallest N such that any r-edge-
coloring of KN has a ki-clique whose edges are all of color i, for some
i. We are then asked to prove that Rr(k, . . . , k) is finite for all k and r.

We first prove by induction on k + l that R2(k, l) is finite for all
k and l. The base case is the fact that R2(k, 2) = R2(2, k) = k. For
the inductive step, we show that R2(k, l) ≤ R2(k − 1, l) + R2(k, l − 1).
Indeed, if we edge color an (m + n)-clique with the colors red and
blue (where m = R2(k − 1, l) and n = R2(k, l − 1)) and fix a vertex
v, the pigeonhole principle guarantees that there are at least m red
edges or n blue edges adjacent to v. In the first case we can take m
vertices joined to v by red edges to obtain either a blue l-clique in

mailto:hbs@u.nus.edu
https://boonsuan.github.io/gtac_solutions.pdf
https://boonsuan.github.io/gtac_solutions.pdf
https://en.wikipedia.org/wiki/Ramsey%27s_theorem#Proof
https://en.wikipedia.org/wiki/Ramsey%27s_theorem#Proof
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which case we are done, or a red (k − 1)-clique which then forms a
k-clique when combined with the red edges from v. The second case
works analogously.

Now we prove that

Rr(k1, . . . , kr) ≤ Rr−1
(
k1, . . . , kr−2, R2(kr−1, kr)

)
=: N;

induction on r then completes the proof. Suppose we are given an
r-edge-coloring of KN . Treating colors r − 1 and r as the same color
yields an (r − 1)-edge-coloring of KN , and the definition of N then
yields a ki-clique of color i for some 1 ≤ i ≤ r − 2 in which case
we are done, or a R2(kr−1, kr)-clique of the combined color {r − 1, r},
which yields in the original coloring a kr−1-clique of color r − 1 or a
kr-clique of color r.

Exercise 0.1.10. We write R(s)
r (k1, . . . , kr) for the hypergraph Ramsey Adapted from Jacob Fox’s notes:

https://math.mit.edu/~fox/

MAT307-lecture06.pdf.
number, which is the minimum number n such that any r-coloring of
the s-uniform hypergraph on n vertices contains a clique of size ki

whose hyperedges all have color i for some 1 ≤ i ≤ r.
We first consider the case with r = 2 colors, where we use the

interpretation of R(s)
2 (k, l) as being the minimum n such that any

s-uniform hypergraph on n vertices contains an independent set of
size k or a clique of size l. We induct on the uniformity s to prove that

R(s)
2 (k, l) ≤ R(s−1)

2

(
R(s)

2 (k − 1, l), R(s)
2 (k, l − 1)

)
+ 1 =: N

for all k, l ≥ s ≥ 1. For the base case, we observe that R(2)
2 (k, l)

is finite for all k and l by the standard Graph Ramsey Theorem,
and that R(s)

2 (k, s) = R(s)
2 (s, k) = k for all k ≥ s. For the inductive

step, fix s, k, and l, and assume that the quantities R(s)
2 (k − 1, l),

R(s)
2 (k, l − 1), and R(s−1)

2 (u, v) for all u, v are all finite. Given an s-
uniform hypergraph H on N vertices, fix v ∈ V(H) and define the link
of v to be the (s − 1)-uniform hypergraph L(v) on V(H) \ {v} whose
hyperedges are (s − 1)-element sets A such that A ∪ {v} ∈ E(H).
(This generalizes the idea of the neighborhood of a graph vertex.)
The definition of N then implies that L(v) has an independent set
K of size R(s)

2 (k − 1, l) or a clique L of size R(s)
2 (k, l − 1). In the first

case, R′ ∪ {v} is not a hyperedge of H whenever R′ ∈ ( K
s−1), and so

applying the inductive hypothesis to the induced hypergraph H[K]
then yields either an independent set K1 of size k − 1 in which case
K1 ∪ {v} is an independent set of size k in H, or a clique L1 of size l.
Similarly for the second case, R′ ∪ {v} is a hyperedge of H whenever
R′ ∈ ( L

s−1), and considering H[L] yields either an independent set
K2 of size k or a clique L2 of size l − 1 that gives rise to the l-clique
L2 ∪ {v} in H.

Finally, for the case of r > 2 colors, the combined color argument
from exercise 0.1.8 yields

R(s)
r (k1, . . . , kr) ≤ R(s)

r−1

(
k1, . . . , kr−2, R(s)

2 (kr−1, kr)
)

,

from which the general result follows by induction on r.

https://math.mit.edu/~fox/MAT307-lecture06.pdf
https://math.mit.edu/~fox/MAT307-lecture06.pdf
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Remark (Erdős–Szekeres convex polygon theorem). The hypergraph
Ramsey theorem implies that for any m ≥ 4, there exists n such that
given any configuration of n points in the plane with no three on a
line, we can find m points that form a convex polygon. The idea is
to set n := R(4)

2 (5, m) and to define a 4-uniform hypergraph on the
set of n points comprising the sets of four points that form convex
quadrilaterals; then the hypergraph Ramsey theorem yields either an
independent set of five points, which is impossible (why?), or a clique
of size m, which can be shown to be our desired set of m points.

Remark (Proposition 0.1.12). An r-edge-coloring of K2r avoiding monochro-
matic triangles: Consider the r-edge-coloring of the complete graph K2r

on vertex set {0, 1}r, defined by coloring each edge with the smallest
index at which the vertices differ. Then, given three vertices x, y, z, 000

001 010

011

100

101110

111

000

001 010

011

100

101110

111

if xy and yz are colored the same, meaning that they both differ at
index i, then x and z agree at index i; and so the edge xz must be
colored differently from xy and yz.

Interestingly, this construction gives a decomposition of K2r into
complete bipartite graphs: For example, K8 = K4,4 ∪ 2K2,2 ∪ 4K1,1, as
can be seen on the right.

Exercise 0.1.14. Given an (r − 1)-coloring c : [N(r − 1)− 1] → [r − 1]
avoiding monochromatic solutions to x + y = z, we may define a
coloring c̃ : [3N(r − 1)− 2] → [r] by

c̃(n) :=


c(n), if n < N(r − 1);

r, if N(r − 1) ≤ n < 2N(r − 1);

c(n − 2N(r − 1) + 1), if 2N(r − 1) ≤ n.

Clearly there are no solutions to x + y = z that are of color r, and so
any monochromatic solution would have to satisfy x < N(r − 1) and
2N(r − 1) ≤ y, z. But then

x +
(
y − 2N(r − 1) + 1

)
= z − 2N(r − 1) + 1

would be a monochromatic triple in c! Thus c̃ avoids monochromatic
solutions to x + y = z, and we have N(r) ≥ 3N(r − 1)− 1 as needed.

It is easy to verify that N(1) = 2 and N(2) = 5; these both satisfy
N(r) ≥ (3r + 1)/2. Inductively, we then have

N(r) ≥ 3N(r − 1)− 1 ≥ 3(3r−1 + 1)/2 − 1 = (3r + 1)/2.

Finally, there exists an r-coloring of [(3r − 1)/2] avoiding monochro-
matic solutions to x + y = z, and we may transfer it to an edge-
coloring of K(3r+1)/2 as in the proof of Schur’s theorem; any monochro-
matic triangles in this complete graph would give us monochromatic
solutions to x + y = z, and so we conclude that the graph does not
contain any monochromatic triangles.
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Exercise 0.1.15. In exercise 0.1.8, we proved that

R2(s, t) ≤ R2(s − 1, t) + R2(s, t − 1).

Since R2(s, 2) = s = (s+2−2
s−1 ) and R2(2, t) = t = (2+t−2

2−1 ), the desired
inequality holds at the boundaries, and induction together with the
identity (n

k) = (n−1
k ) + (n−1

k−1) then gives the claim.

Exercise 0.1.16. (a) True. This follows from Goodman’s formula, Adapted from David Conlon’s notes:
http://www.its.caltech.edu/

~dconlon/RamseyLecture1.pdf.
which states that the number ∆ of monochromatic triangles in a
red-blue edge coloring of the complete graph Kn is given by

∆ =
1
2

[
∑
v

(
dG(v)

2

)
+ ∑

v

(
dG(v)

2

)
−

(
n
3

)]
,

where G and G denote respectively the graphs comprising the red and
blue edges in the coloring. We can then minimize ∆ by taking dG(v) =
(n − 1)/2, which yields ∆ ≥ 1

24 n(n − 1)(n − 5) = 1
4 (

n
3) + O(n2).

(b) False. See J. Cummings, D. Král, F. Pfender, K. Sperfeld, A.
Treglown, and M. Young, J. Combinatorial Theory B103 (2013), 489–503,
where the minimum fraction of monochromatic triangles is shown to
be 1/25 asymptotically.

(c*) False. Although conjectured to be true by Erdős in the 1960s,
Andrew Thomason constructed difficult counterexamples in Journal
of the London Mathematical Society (2) 39 (1989), 246–255. He later
presented simpler constructions involving graph tensor products in
Combinatorica 17 (1997), 125–134.

0.2. Progressions

Exercise 0.2.2. Color 0 blue, {1, 2} red, {3, 4, 5} blue, {6, 7, 8, 9} red,
etc. If a < 0, give it the same color as −a. Since the monochromatic
blocks eventually become longer than any fixed common difference d,
any infinite arithmetic progression will be unable to ‘jump over’ such
a block completely, and so it cannot be monochromatic.

Remark (Recent improvements for bounds on Szemerédi’s theorem).
In 2023, Zander Kelley and Raghu Meka [arXiv:2302.05537 [math.nt]
(2023), 79 pages] proved that 3-AP-free subsets of [N] have size at
most

N exp(−c(log N)1/12)

for some c > 0; the exponent 1/12 was quickly improved to 1/9 by
Thomas Bloom and Olof Sisask in the same year [arXiv:2309.02353

[math.nt] (2023), 9 pages]. Thus Behrend’s bound is close to the truth,
as long suspected.

For k ≥ 5, James Leng, Ashwin Sah, and Mehtaab Sawhney have
recently obtained the improved bound CN exp

(
−(log log N)ck

)
; see

arXiv:2402.17995 [math.co] (2024), 13 pages.

http://www.its.caltech.edu/~dconlon/RamseyLecture1.pdf
http://www.its.caltech.edu/~dconlon/RamseyLecture1.pdf
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1. Forbidding a Subgraph

1.1. Forbidding a Triangle: Mantel’s Theorem

Exercise 1.1.3. We begin with a lemma: If x, y, z ∈ Rd satisfy Adapted from a post of Misha Lavrov:
https://math.stackexchange.com/a/

4370689/. I thank Clarence Chew for
the proof of the lemma.

|x|, |y|, |z| ≥ 1, then we cannot have |x + y|, |x + z|, |y + z| < 1. It
suffices to observe that

|x + y|2 + |x + z|2 + |y + z|2

= |x|2 + 2 x · y + |y|2

+ |x|2 + 2 x · z + |z|2

+ |y|2 + 2 y · z + |z|2

= |x + y + z|2 + |x|2 + |y|2 + |z|2 ≥ 3.

Consider i.i.d. X1, . . . , Xn drawn from the same distribution as X. The
expected number of sets {Xi, Xj} with i ̸= j and |Xi + Xj| ≥ 1 is
M := (n

2)Pr(|X + Y| ≥ 1), whereas the expected number of Xi with
|Xi| ≥ 1 is N := n Pr(|X| ≥ 1).

Say |X1|, . . . , |Xk| ≥ 1. Define a graph G on [k] where ij is an edge
iff |Xi + Xj| < 1. Then G is triangle-free by the lemma above, and
so Mantel’s theorem implies that there are at most k2/4 sets {i, j}
with |Xi + Xj| < 1. Thus in expectation we have M ≥ N2/4; sending
n → ∞ then completes the proof.

Exercise 1.1.4. A triangle xyz arises from an edge xy together with a
common neighbor z of x and y. Consider an edge xy. The vertices x
and y have at least deg(x) + deg(y)− n common neighbors, and thus
we have by Cauchy–Schwarz

∑
xy∈E(G)

(
deg(x) + deg(y)− n

)
= ∑

x∈V(G)

deg(x)2 − nm

≥ 1
n

(
∑

x∈V(G)

deg(x)
)2

− nm

=
4m2

n
− nm.

Since every triangle has three edges, we see that our graph has at
least

1
3

(4m2

n
− nm

)
=

4m
3n

(
m − n2

4

)
triangles as needed.

Exercise 1.1.5. Let G be an n-vertex nonbipartite triangle-free graph, See Lemma 1 in P. Erdös, Illinois Journal
of Mathematics 6 (1962), 122–127.and consider a smallest cycle C, so that 3 < |C| =: k ≤ n. Let us count

the number of edges in G. Minimality implies that every vertex of
A := G \ C can be connected to at most two vertices of C, so there are
at most 2(n − k) edges between A and C. Mantel’s theorem gives at
most (n − k)2/4 edges within A, and there are k edges within C by
minimality again, so adding these up and using the fact that k ≥ 5
yields the desired bound.

https://math.stackexchange.com/a/4370689/
https://math.stackexchange.com/a/4370689/
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Exercise 1.1.6. Let v ∈ G be a vertex of maximum degree, and Adapted from a post of Lanchao
Wang: https://math.stackexchange.

com/a/4914839/.
write Nv for its neighborhood, which is an independent set as G is
triangle-free. We compute⌊n2

4

⌋
≥ deg(v)

(
n − deg(v)

)
≥ ∑

x ̸∈Nv

deg(x)

= 2e(G[V \ Nv]) + e(Nv, V \ Nv)

= e(G) + e(G[V \ Nv])

≥
⌊n2

4

⌋
− k + e(G[V \ Nv]),

from which the result follows, since removing the edges of G[V \ Nv]

makes G bipartite.

Exercise 1.1.7. Suppose for contradiction that G is not bipartite, Adapted from a post of Alex Ravsky:
https://math.stackexchange.com/a/

2423710/
and let C be a smallest cycle, so that it has odd length k ≥ 5. Then
C is chordless, and so there are more than k(2n/5 − 2) ≥ 2(n − k)
edges between C and A := G \ C. Since |A| = n − k, the pigeonhole
principle admits v ∈ A that is adjacent to at least three vertices of C,
but this gives rise to a smaller odd cycle, contradicting the minimality
of C.

Exercise 1.1.8*. We induct on n. Suppose inductively that a graph Adapted from David Conlon’s notes:
https://www.its.caltech.edu/

~dconlon/EGTSheet1Sol.pdf
on n − 2 vertices with at least ⌊(n − 2)2/4⌋ + 1 edges contains at
least ⌊(n − 2)/2⌋ triangles, and let G be an n-vertex graph with
⌊n2/4⌋+ 1 = ⌊(n − 2)2/4⌋+ 1 + (n − 1) edges.

Suppose for contradiction that G has less than ⌊n/2⌋ triangles.
Then we can find an edge xy of G such that x and y have no common
neighbors, since 3(⌊n/2⌋− 1) < ⌊n2/4⌋+ 1. Thus deg(x)+deg(y) ≤
n. Let H be the subgraph of G with vertices x and y removed. Then
H is an (n − 2)-vertex graph with at least ⌊(n − 2)2/4⌋+ 1 edges, and
so it contains at least ⌊(n − 2)/2⌋ triangles. But there are at most
⌊(n − 2)2/4⌋ edges between N(x) \ y and N(y) \ x in H, so there is
an edge contained completely in one of these sets. This gives rise to a
triangle in G, which completes the induction.

Exercise 1.1.9*. To do. . .

Exercise 1.1.10*. To do. . . See P. Erdös, Illinois J. Mathematics 6
(1962), 122–127.

1.2. Forbidding a Clique: Turán’s Theorem

Exercise 1.2.5. Writing k = n mod r, we see that Tn,r has k parts of
size ⌈n/r⌉ and r − k parts of size ⌊n/r⌋, so that

e(Tn,r) =

(
k
2

)⌈n
r

⌉2
+ k(r − k)

⌈n
r

⌉⌊n
r

⌋
+

(
r − k

2

)⌊n
r

⌋2
.

Proving the bound then amounts to optimizing the function

(x1, . . . , xr) 7→ ∑
1≤i<j≤r

xixj

https://math.stackexchange.com/a/4914839/
https://math.stackexchange.com/a/4914839/
https://math.stackexchange.com/a/2423710/
https://math.stackexchange.com/a/2423710/
https://www.its.caltech.edu/~dconlon/EGTSheet1Sol.pdf
https://www.its.caltech.edu/~dconlon/EGTSheet1Sol.pdf
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subject to the constraint x1 + · · ·+ xr = n, and it can be shown that
the maximum is achieved when x1 = · · · = xr.

Remark (Fourth proof of Turán’s theorem). The inequality

∑
v∈V

1
n − deg v

≥ n
n − (∑v∈V deg v)/n

follows from the convexity of x 7→ 1/(n − x) on (0, n); in particular,
we use Jensen’s inequality in the form

1
n ∑

i
f (xi) ≥ f

( 1
n ∑

i
xi

)
.

Exercise 1.2.8. To do. . .

Exercise 1.2.9*. To do. . .

Exercise 1.2.10. To do. . .

1.3. Turán Density and Supersaturation

Remark (Proposition 1.3.1). In the following computation, S ⊂ V(G)

will be a set of n vertices from a graph G on n + 1 vertices; we will
write vS for the single vertex of G that does not belong to S. We have

ES⊂V(G)
|S|=n

e(G[S])
(n

2)
=

1

(n+1
n )

∑
S⊂V(G)
|S|=n

e(G[S])
(n

2)

=
1

(n+1
2 )(n − 1)

∑
S⊂V(G)
|S|=n

(
e(G)− deg(vS)

)

=
1

(n+1
2 )(n − 1)

(
(n + 1)e(G)− 2e(G)

)
=

e(G)

(n+1
2 )

.

Remark (Some details in Theorem 1.3.4). One way to understand the
equivalent statement of the theorem is to take ϵn = 1/n and obtain
corresponding δn from the theorem so that every sufficiently large
graph with at least (π(H) + 1/n)(n

2) edges contains at least δnnv(H)

copies of H as a subgraph; having o(nv(H)) copies of H then means
that we eventually have less than δnnv(H) copies of H for each n, so
that the edge density is at most π(H) + o(1).

To show that E X = e(G)/(n
2), we compute

ES∈(V(G)
n0

)

e(G[S])
(n0

2 )
=

1
( n

n0
) ∑

S∈(V(G)
n0

)

e(G[S])
(n0

2 )

=
1

(n
2)(

n−2
n0−2)

∑
S∈(V(G)

n0
)

e(G[S])
(n0

2 )
.
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Thus it suffices to show that(
n − 2
n0 − 2

)
e(G) = ∑

S∈(V(G)
n0

)

e(G[S])
(n0

2 )
,

but this simply states that every edge xy of G is counted in the sum
( n−2

n0−2) times, which holds because that is the number of ways to
choose the set S after forcing it to include the vertices x and y.

To see that Pr(X ≥ π(H) + ϵ/2) ≥ ϵ/2, observe that∫ 1

0
Pr(X ≥ t) dt = E X ≥ π(H) + ϵ,

so Pr(X ≥ π(H) + ϵ/2) < ϵ/2 would imply that

E X =
∫ π(H)+ϵ/2

0
Pr(X ≥ t) dt +

∫ 1

π(H)+ϵ/2
Pr(X ≥ t) dt

≤ π(H) +
ϵ

2
+

ϵ

2

(
1 − π(H)− ϵ

2

)
< π(H) + ϵ.

Exercise 1.3.5. To do. . .

Exercise 1.3.6. To do. . .

Exercise 1.3.7. To do. . .

1.4. Forbidding a Complete Bipartite Graph:
Kővári–Sós–Turán Theorem

Exercise 1.4.11. Let the graph G have m edges, and parts A and B
of sizes a and b respectively. We bound e(G) by double counting the
number X of copies of K2,1 in G with the right vertex in B. The upper
bound is X ≤ (a

2) since G is C4-free. The lower bound is given by

X = ∑
v∈V(B)

(
deg v

2

)
= ∑

v∈V(B)
f2(deg v) ≥ b f2

(m
b

)
,

where we have used the convexity of f2(x) := x(x − 1)/2[x ≥ 1].
Since we can assume m ≥ b (by considering say the bipartite graph
between A and B with a fixed vertex a ∈ A and every vertex of B
adjacent to a), we can put the lower and upper bounds together to get

b
2
· m

b

(m
b
− 1

)
−

(
a
2

)
≤ 0.

The left-hand side is quadratic in m, and evaluating it at m = ab1/2 + b
gives 1

2 a(b1/2 + 1) > 0, so we conclude that m ≤ ab1/2 + b.

Exercise 1.4.12. To do. . .

Exercise 1.4.13. To do. . .

Exercise 1.4.14. To do. . .



gtac solutions (14 dec 2024) 9

1.5. Forbidding a General Subgraph:
Erdős–Stone–Simonovits Theorem

Exercise 1.5.8. The argument is a straightforward modification of the
proof that ex(n, K(3)

s,s,s) ≲s n3−1/s2
(Theorem 1.5.7). We nonetheless

write it out carefully as practice.
Let G be a K(3)

r,s,t-free 3-graph with n vertices and m edges. Let X

denote the number of copies of K(3)
1,s,1 in G. (When s = 1, we count

each copy three times.)
Upper bound on X. Given a set S of s vertices, consider the set A of

all unordered pairs of distinct vertices that would form a K(3)
1,s,1 with

S (i.e., every triple formed by combining a pair in A and a vertex
in S is an edge of G). Note that A is the edge set of a graph on
the same n vertices. If A contains a Kr,t, then together with S we
would have a K(3)

r,s,t. Thus, A is Kr,t-free, and hence by Theorem 1.4.2,
|T| = Or,t(n2−1/r). Therefore,

X ≲r,t

(
n
s

)
n2−1/r ≲r,s,t ns+2−1/r.

Lower bound on X. We write deg(u, v) for the number of edges in
G containing both u and v. Then, summing over all unordered pairs
of distinct vertices u, v in G, we have

X = ∑
u,v

(
deg(u, v)

s

)
.

As in the proof of Theorem 1.4.2, let

fs(x) =

x(x − 1) . . . (x − s + 1)/s! if x ≥ s − 1;

0 if x < s − 1.

Then, fs is convex and fs(x) = (x
s) for all nonnegative integers x.

Since the average of deg(u, v) is 3m/(n
2), we have

X = ∑
u,v

fs(deg(u, v)) ≥
(

n
2

)
fs

(
3m
(n

2)

)
.

Combining the upper and lower bounds, we have(
n
2

)(
3m
(n

2)

)s

≲r,s,t ns+2−1/r

and hence
m = Or,s,t(n3−1/(rs)).

Exercise 1.5.10. To do. . .

Exercise 1.5.11. To do. . .

1.6. Forbidding a Cycle

Exercise 1.6.8. Given a tree T with k edges and an n-vertex graph
G with kn edges, Lemma 1.6.7 yields a subgraph H with minimum
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degree at least k + 1. Ordering the vertices v1, . . . , vk+1 of the tree
T so that each induced subgraph G[v1, . . . , vl ] is connected, we may
embed T in H one edge at a time, and there will always be enough
unused edges at each vertex due to the minimum degree condition.

Remark (The extremal number of trees). Erdős and Sós conjectured
in 1962 that every n-vertex graph with more than n(k − 2)/2 edges
must contain every k-vertex tree for n ≥ k. A proof for large k was
announced in the 1990s by M. Ajtai, J. Komlós, M. Simonovits, and E.
Szemerédi, but thirty years have passed and it has yet to appear.

See however these slides from a 2015

talk of Simonovits that give an outline
of their approach:
https://imada.sdu.dk/Research/

GT2015/Talks/Slides/simonovits.

pdf.

1.7. Forbidding a Sparse Bipartite Graph: Dependent Random Choice

Exercise 1.7.7. To do. . .

Exercise 1.7.8. To do. . .

Exercise 1.7.9. To do. . .

1.8. Lower Bound Constructions: Overview

(This section has no exercises.)

1.9. Randomized Constructions

Exercise 1.9.5. To do. . .

Exercise 1.9.6. To do. . .

1.10. Algebraic Constructions

(This section has no exercises.)

1.11. Randomized Algebraic Constructions

(This section has no exercises.)

https://imada.sdu.dk/Research/GT2015/Talks/Slides/simonovits.pdf
https://imada.sdu.dk/Research/GT2015/Talks/Slides/simonovits.pdf
https://imada.sdu.dk/Research/GT2015/Talks/Slides/simonovits.pdf
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2. Graph Regularity Method

2.1. Szemerédi’s Graph Regularity Lemma

Exercise 2.1.4. To do. . .

Exercise 2.1.5. To do. . .

Exercise 2.1.6. To do. . .

Exercise 2.1.22. To do. . .

Exercise 2.1.23. To do. . .

Exercise 2.1.24. To do. . .

Exercise 2.1.25. To do. . .

Exercise 2.1.27. To do. . .

Exercise 2.1.28*. To do. . .

2.2. Triangle Counting Lemma

(This section has no exercises.)

2.3. Triangle Removal Lemma

Exercise 2.3.6. To do. . .

2.4. Graph Theoretic Proof of Roth’s Theorem

Exercise 2.4.6*. To do. . .

2.5. Large 3-AP-Free Sets: Behrend’s Construction

Exercise 2.5.4. To do. . .

Exercise 2.5.5*. To do. . .

2.6. Graph Counting and Removal Lemmas

Exercise 2.6.6. To do. . .

2.7. Exercises on Applying Graph Regularity

Exercise 2.7.1. To do. . .

Exercise 2.7.2. To do. . .
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Exercise 2.7.3. To do. . .

Exercise 2.7.4. To do. . .

Exercise 2.7.5*. To do. . .

Exercise 2.7.6*. To do. . .

2.8. Induced Graph Removal and Strong Regularity

Exercise 2.8.8. To do. . .

2.9. Graph Property Testing

(This section has no exercises.)

2.10. Hypergraph Removal and Szemerédi’s Theorem

Exercise 2.10.3. To do. . .

Exercise 2.10.4. To do. . .

Exercise 2.10.5. To do. . .

2.11. Hypergraph Regularity

Exercise 2.11.3. To do. . .
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3. Pseudorandom Graphs

3.1. Quasirandom Graphs

Exercise 3.1.13. To do. . .

Exercise 3.1.17. To do. . .

Exercise 3.1.24. To do. . .

Exercise 3.1.27. To do. . .

Exercise 3.1.30. To do. . .

Exercise 3.1.31*. To do. . .

Exercise 3.1.32. To do. . .

Exercise 3.1.33*. To do. . .

Exercise 3.1.34*. To do. . .

3.2. Expander Mixing Lemma

Exercise 3.2.5. To do. . .

Exercise 3.2.8. To do. . .

Exercise 3.2.10. To do. . .

Exercise 3.2.14. To do. . .

Exercise 3.2.15. To do. . .

Exercise 3.2.16. To do. . .

Exercise 3.2.17. To do. . .

Exercise 3.2.18. To do. . .

3.3. Abelian Cayley Graphs and Eigenvalues

Exercise 3.3.16. To do. . .

Exercise 3.3.17. To do. . .

Exercise 3.3.18. To do. . .

Exercise 3.3.19*. To do. . .

3.4. Quasirandom Groups

Exercise 3.4.8. To do. . .
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Exercise 3.4.11. To do. . .

3.5. Quasirandom Cayley Graphs and Grothendieck’s Inequality

(This section has no exercises.)

3.6. Second Eigenvalue: Alon–Boppana Bound

Exercise 3.6.14. To do. . .

Exercise 3.6.15*. To do. . .
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4. Graph Limits

4.1. Graphons

(This section has no exercises.)

4.2. Cut Distance

Exercise 4.2.11. To do. . .

4.3. Homomorphism Density

Exercise 4.3.10. To do. . .

4.4. W-Random Graphs

(This section has no exercises.)

4.5. Counting Lemma

(This section has no exercises.)

4.6. Weak Regularity Lemma

Exercise 4.6.12. To do. . .

Exercise 4.6.13*. To do. . .

Exercise 4.6.14. To do. . .

4.7. Martingale Convergence Theorem

(This section has no exercises.)

4.8. Compactness of the Graphon Space

Exercise 4.8.2. To do. . .

4.9. Equivalence of Convergence

Exercise 4.9.5. To do. . .

Exercise 4.9.7. To do. . .

Exercise 4.9.10. To do. . .

Exercise 4.9.11*. To do. . .

Exercise 4.9.12. To do. . .
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5. Graph Homomorphism Inequalities

Exercise 5.0.8. To do. . .

Exercise 5.0.10. To do. . .

Exercise 5.0.11. To do. . .

Exercise 5.0.12. To do. . .

Exercise 5.0.13. To do. . .

5.1. Edge vs. Triangle Densities

Exercise 5.1.9. To do. . .

5.2. Cauchy–Schwarz

Exercise 5.2.4. To do. . .

Exercise 5.2.14. To do. . .

Exercise 5.2.15. To do. . .

Exercise 5.2.16. To do. . .

Exercise 5.2.17. To do. . .

Exercise 5.2.18. To do. . .

Exercise 5.2.19. To do. . .

5.3. Hölder

Exercise 5.3.8. To do. . .

Exercise 5.3.9. To do. . .

Exercise 5.3.12. To do. . .

Exercise 5.3.17. To do. . .

Exercise 5.3.21. To do. . .

Exercise 5.3.22. To do. . .

Exercise 5.3.23. To do. . .

Exercise 5.3.24. To do. . .
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5.4. Lagrangian

Exercise 5.4.7. To do. . .

Exercise 5.4.8. To do. . .

Exercise 5.4.9. To do. . .

Exercise 5.4.10. To do. . .

Exercise 5.4.11. To do. . .

Exercise 5.4.12*. To do. . .

5.5. Entropy

Exercise 5.5.2. To do. . .

Exercise 5.5.13. To do. . .

Exercise 5.5.15. To do. . .

Exercise 5.5.18. To do. . .

Exercise 5.5.19. To do. . .

Exercise 5.5.21. To do. . .

Exercise 5.5.22. To do. . .
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6. Forbidding 3-Term Arithmetic Progressions

6.1. Fourier Analysis in Finite Field Vector Spaces

Exercise 6.1.11. To do. . .

6.2. Roth’s Theorem in the Finite Field Model

Exercise 6.2.11. To do. . .

Exercise 6.2.12. To do. . .

Exercise 6.2.13. To do. . .

Exercise 6.2.14. To do. . .

6.3. Fourier Analysis in the Integers

Exercise 6.3.7. To do. . .

Exercise 6.3.8. To do. . .

Exercise 6.3.9. To do. . .

6.4. Roth’s Theorem in the Integers

Exercise 6.4.8*. To do. . .

6.5. Polynomial Method

Exercise 6.5.12. To do. . .

Exercise 6.5.13. To do. . .

6.6. Arithmetic Regularity

Exercise 6.6.2. To do. . .

Exercise 6.6.13. To do. . .

Exercise 6.6.15. To do. . .

6.7. Popular Common Difference

Exercise 6.7.2. To do. . .

Exercise 6.7.4. To do. . .
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7. Structure of Set Addition

7.1. Sets of Small Doubling: Freiman’s Theorem

Exercise 7.1.2. To do. . .

7.2. Sumset Calculus I: Ruzsa Triangle Inequality

Exercise 7.2.4. To do. . .

7.3. Sumset Calculus II: Plünnecke’s Inequality

Exercise 7.3.7*. To do. . .

Exercise 7.3.8*. To do. . .

Exercise 7.3.9*. To do. . .

7.4. Covering Lemma

Exercise 7.4.3*. To do. . .

7.5. Freiman’s Theorem in Groups with Bounded Exponent

Exercise 7.5.7. To do. . .

Exercise 7.5.8*. To do. . .

7.6. Freiman Homomorphisms

(This section has no exercises.)

7.7. Modeling Lemma

Exercise 7.7.4. To do. . .

Exercise 7.7.5. To do. . .

Exercise 7.7.6. To do. . .

7.8. Iterated Sumsets: Bogolyubov’s Lemma

Exercise 7.8.7. To do. . .

Exercise 7.8.8. To do. . .

7.9. Geometry of Numbers

(This section has no exercises.)
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7.10. Finding a GAP in a Bohr Set

(This section has no exercises.)

7.11. Proof of Freiman’s Theorem

Exercise 7.11.2. To do. . .

7.12. Polynomial Freiman–Ruzsa Conjecture

Remark. The polynomial Freiman–Rusza conjecture has been proven
by W. T. Gowers, Ben Green, Freddie Manners, and Terence Tao [To
appear in Annals of Mathematics].

7.13. Additive Energy and the Balog–Szemerédi–Gowers Theorem

(This section has no exercises.)
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8. Sum-Product Problem

8.1. Multiplication Table Problem

(This section has no exercises.)

8.2. Crossing Number Inequality and Point-Line Incidences

Exercise 8.2.8. To do. . .

8.3. Sum-Product via Multiplicative Energy

(This section has no exercises.)
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9. Progressions in Sparse Pseudorandom Sets

9.1. Green–Tao Theorem

(This section has no exercises.)

9.2. Relative Szemerédi Theorem

(This section has no exercises.)

9.3. Transference Principle

(This section has no exercises.)

9.4. Dense Model Theorem

Exercise 9.4.1. To do. . .

Exercise 9.4.12. To do. . .

9.5. Sparse Counting Lemma

(This section has no exercises.)

9.6. Proof of the Relative Roth Theorem

Exercise 9.6.2. To do. . .
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