The Cauchy–Binet Formula

ho boon suan

January 2021

The Cauchy–Binet formula is a generalization of the identity det(AB) = det(A) det(B) to non-square matrices. More specifically, if *A* and *B* are $m \times n$ and $n \times m$ matrices respectively, then

$$\det(AB) = \sum_{S \subseteq \binom{[n]}{m}} \det(A_{[m] \times S}) \det(B_{S \times [m]}),$$

where $[n] := \{1, 2, ..., n\}, {\binom{[n]}{m}}$ denotes the set of *m* element subsets of [n], and $A_{R \times S} := (a_{ij})_{i \in R, j \in S}$ is the submatrix of *A* with rows indexed by *R* and columns indexed by *S*. (In particular, $A = A_{[m] \times [n]}$.) For example, if m = 2 and n = 3, writing $|A| := \det(A)$ for convenience, we get the identity

$$\det \begin{bmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} \end{bmatrix}$$
$$= \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{vmatrix} \begin{vmatrix} b_{11} & b_{12} \\ b_{31} & b_{32} \end{vmatrix} + \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \begin{vmatrix} b_{21} & b_{22} \\ b_{31} & b_{32} \end{vmatrix}$$

If m = n, the formula is precisely det(AB) = det(A) det(B). If m > n, then $\binom{[n]}{m} = \emptyset$ and so det(AB) = 0, reflecting the fact the $m \times m$ matrix AB cannot have full rank as $rank(AB) \le rank(A) \le n < m$.

We present two proofs of the formula. The first proof relies on the exterior algebra, and the second proof makes use of characteristic polynomials.

Via exterior powers

Let m < n. The $m \times n$ matrix A can be interpreted as a linear map $L_A: \mathbf{k}^n \to \mathbf{k}^m$, where \mathbf{k} is a field. We shall investigate what maps the $m \times m$ matrices $A_{[m] \times S}$ and $B_{S \times [m]}$ represent. Denote by e_1, \ldots, e_n the standard basis for \mathbf{k}^n and fix $S = \{s_1, \ldots, s_m\}$ with $1 \leq s_1 < \cdots < s_m \leq n$. We define an *m*-dimensional subspace of \mathbf{k}^n by

$$V_S := \operatorname{span}\{e_{s_1},\ldots,e_{s_m}\} \subseteq \mathbf{k}^n.$$

A natural way to obtain a map between *m*-dimensional spaces from L_A is by first applying some inclusion $\mathbf{k}^m \hookrightarrow \mathbf{k}^n$ before applying L_A . Similarly, since L_B is a map $\mathbf{k}^m \to \mathbf{k}^n$, it is natural to apply a projection $\mathbf{k}^n \to \mathbf{k}^m$ after applying L_B to obtain a map between *m*-dimensional spaces. We are thus led to consider the maps

$$V_S \stackrel{\iota_S}{\hookrightarrow} \mathbf{k}^n \stackrel{L_A}{\to} \mathbf{k}^n$$

where ι_S denotes the natural inclusion, and

$$\mathbf{k}^m \stackrel{L_B}{\to} \mathbf{k}^n \stackrel{\pi_S}{\twoheadrightarrow} V_S$$

where π_S denotes the natural projection onto V_S . Identifying $\mathbf{k}^m \cong V_S$ by $e_i \mapsto e_{s_i}$, we find that $L_A \circ \iota_S$ and $\pi_S \circ L_B$ are represented by $A_{[m] \times S}$ and $B_{S \times [m]}$ respectively. (This fact is perhaps best appreciated with a concrete example as given in the margin, noting that multiplying a matrix on the right gives linear combinations of columns while multiplying on the left gives linear combinations of rows.) Passing to the *m*-th exterior power for L_B , we get

$$(\Lambda^m(\pi_S L_B))(e_1 \wedge \cdots \wedge e_m) = \det(B_{S \times [m]})e_{s_1} \wedge \cdots \wedge e_{s_m}.$$

Since $\Lambda^m(\pi_S L_B) = \Lambda^m \pi_S \circ \Lambda^m L_B$, it follows that

$$(\Lambda^m L_B)(e_1 \wedge \cdots \wedge e_m) = \sum_{\substack{S = \{s_1, \dots, s_m\}\\1 \le s_1 < \cdots < s_m \le n}} \det(B_{S \times [m]})e_{s_1} \wedge \cdots \wedge e_{s_m}.$$

Since the *m*-th exterior power for L_A gives

$$(\Lambda^m L_A)(e_{s_1} \wedge \cdots \wedge e_{s_m}) = \det(A_{[m] \times S})e_1 \wedge \cdots \wedge e_m$$

where we have once again identified $\mathbf{k}^m \cong V_S$ as above, we compute

$$(\Lambda^{m}L_{AB})(e_{1}\wedge\cdots\wedge e_{m})$$

$$=(\Lambda^{m}L_{A})\sum_{\substack{S=\{s_{1},\ldots,s_{m}\}\\1\leq s_{1}<\cdots< s_{m}\leq n}}\det(B_{S\times[m]})e_{s_{1}}\wedge\cdots\wedge e_{s_{m}}$$

$$=\sum_{\substack{S=\{s_{1},\ldots,s_{m}\}\\1\leq s_{1}<\cdots< s_{m}\leq n}}\det(B_{S\times[m]})(\Lambda^{m}L_{A})(e_{s_{1}}\wedge\cdots\wedge e_{s_{m}})$$

$$=\left(\sum_{S\subseteq\binom{[n]}{m}}\det(A_{[m]\times S})\det(B_{S\times[m]})\right)e_{1}\wedge\cdots\wedge e_{m}.$$

Via the characteristic polynomial

Given an $n \times n$ matrix X, we work with the polynomial det $(zI_n + X)$ in z whose coefficients are those of the characteristic polynomial, without the signs for convenience. We first show that the coefficient of z^{n-m} in this polynomial is equal to the sum of $m \times m$ principal minors of X, where $1 \le m \le n$. We compute

$$det(zI_n + X) = \sum_{\sigma \in \mathfrak{S}_n} (\operatorname{sgn} \sigma) \prod_{1 \le m \le n} (z\delta_{m,\sigma(m)} + X_{m,\sigma(m)})$$

$$= \sum_{\sigma \in \mathfrak{S}_n} (\operatorname{sgn} \sigma) \sum_{S \subseteq [n]} \prod_{i \in S} X_{i,\sigma(i)} \prod_{j \in [n] - S} z\delta_{j,\sigma(j)}$$

$$= \sum_{S \subseteq [n]} \sum_{\sigma \in \mathfrak{S}_n} (\operatorname{sgn} \sigma) \prod_{i \in S} X_{i,\sigma(i)} \prod_{j \in [n] - S} z\delta_{j,\sigma(j)}$$

$$= \sum_{S \subseteq [n]} z^{n-|S|} \sum_{\sigma \in \mathfrak{S}_S} (\operatorname{sgn} \sigma) \prod_{i \in S} X_{i,\sigma(i)}$$

$$= \sum_{S \subseteq [n]} z^{n-|S|} det(X_{S \times S})$$

$$= \sum_{0 \le m \le n} z^{n-m} \sum_{S \in \binom{[n]}{m}} det(X_{S \times S}).$$

The *Kronecker delta* $\delta_{i,j}$ is equal to 1 if i = j and is 0 otherwise.

Here the sign stays the same when we pass from \mathfrak{S}_n to the subgroup \mathfrak{S}_S . This can be seen by thinking of sgn σ as counting the number of transpositions of σ , modulo 2.

An example with m = 2, n = 3, and $S = \{1,3\} \subseteq [3]$. We have naturally identified $\mathbf{k}^m \cong V_S$ by $e_i \mapsto e_{s_i}$. $L_A \circ \iota_S = L_{A_{|2| \times S}}$:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} \\ b_{31} & b_{32} \end{pmatrix}$$

 $\pi_S \circ L_B = L_{B_{S \times [2]}}$:

Before proving the Cauchy-Binet formula, we will need the identity

$$\det(zI_n + BA) = z^{n-m}\det(zI_m + AB),$$

where $m \le n$, and A and B are $m \times n$ and $n \times m$ matrices respectively. We first show the result for when z = 1 and m = n. In this case, the identity reads $det(I_m + BA) = det(I_m + AB)$. We may consider the identity $det((I_m + BA)B) = det(B(I_m + AB))$ as a polynomial identity in the domain $\mathbb{Z}[a_{ij}, b_{ij}]$, where we may cancel det B from both sides to obtain the result. We may then apply the result over any field via the universal property of polynomial rings, sending each indeterminate a_{ij} to the field element $a_{ij} \in \mathbf{k}$. We may then extend the result to when m < n by padding the rectangular matrices with zeroes to form square matrices. In detail, we get

$$\begin{pmatrix} B & 0_{n \times (n-m)} \end{pmatrix} \begin{pmatrix} A \\ 0_{(n-m) \times n} \end{pmatrix} = BA$$

and

$$\begin{pmatrix} A \\ 0_{(n-m)\times n} \end{pmatrix} \begin{pmatrix} B & 0_{n\times(n-m)} \end{pmatrix} = \begin{pmatrix} AB & 0_{m\times(n-m)} \\ 0_{(n-m)\times m} & 0_{(n-m)\times(n-m)} \end{pmatrix},$$

and the result follows since

$$\det \begin{pmatrix} I_m + AB & 0\\ 0 & I_{n-m} \end{pmatrix} = \det(I_m + AB) \det(I_{n-m}),$$

which can be seen by using the Leibniz permutation expansion of the determinant. Finally, for $z \neq 1$, we employ a scaling argument. The case for z = 0 is left as an exercise; consider $z \neq 0$. We set $A' := z^{-1}A$, and compute

$$det(zI_n + BA) = det(zI_n + zBA')$$
$$= z^n det(I_n + BA')$$
$$= z^n det(I_m + A'B)$$
$$= z^{n-m} det(zI_m + zA'B)$$
$$= z^{n-m} det(zI_m + AB).$$

The Cauchy–Binet formula is now within our reach. Comparing the coefficients of z^{n-m} in $det(zI_n + BA) = z^{n-m} det(zI_m + AB)$, we find that the sum of principal $m \times m$ minors of BA is equal to det(AB); that is,

$$\det(AB) = \sum_{S \in \binom{[n]}{m}} \det((BA)_{S \times S}).$$

If $S = \{s_1, ..., s_m\}$, then

$$((BA)_{S \times S})_{ij} = (BA)_{s_i,s_j}$$

= $\sum_{1 \le k \le m} B_{s_i,k} A_{k,s_j}$
= $\sum_{1 \le k \le m} (B_{S \times [m]})_{i,k} (A_{[m] \times S})_{k,j}$
= $(B_{S \times [m]} A_{[m] \times S})_{ij}$,

proving the result.

If one prefers to avoid such abstract nonsense proofs, one may simply note that $B(I_m + AB)B^{-1} = I_m + BA$, and thus the result holds for invertible *B*, which are dense in the space of $m \times m$ matrices.