The Cauchy-Binet Formula

ho boon suan
January 2021
The Cauchy-Binet formula is a generalization of the identity $\operatorname{det}(A B)=$ $\operatorname{det}(A) \operatorname{det}(B)$ to non-square matrices. More specifically, if A and B are $m \times n$ and $n \times m$ matrices respectively, then

$$
\operatorname{det}(A B)=\sum_{S \subseteq\binom{(n)}{m}} \operatorname{det}\left(A_{[m] \times S}\right) \operatorname{det}\left(B_{S \times[m]}\right),
$$

where $[n]:=\{1,2, \ldots, n\},\binom{[n]}{m}$ denotes the set of m element subsets of [n], and $A_{R \times S}:=\left(a_{i j}\right)_{i \in R, j \in S}$ is the submatrix of A with rows indexed by R and columns indexed by S. (In particular, $A=A_{[m] \times[n]}$.) For example, if $m=2$ and $n=3$, writing $|A|:=\operatorname{det}(A)$ for convenience, we get the identity

$$
\begin{aligned}
& \operatorname{det}\left[\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{13} \\
a_{21} & a_{22} \\
a_{23}
\end{array}\right)\left(\begin{array}{l}
b_{11} \\
b_{12} \\
b_{21} \\
b_{31} \\
b_{32}
\end{array}\right)\right] \\
& =\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|\left|\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|\left|\begin{array}{ll}
b_{11} & b_{12} \\
b_{31} & b_{32}
\end{array}\right|+\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|\left|\begin{array}{l}
b_{21} \\
b_{21} \\
b_{31} \\
b_{22}
\end{array}\right| .
\end{aligned}
$$

If $m=n$, the formula is precisely $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. If $m>n$, then $\binom{[n]}{m}=\varnothing$ and so $\operatorname{det}(A B)=0$, reflecting the fact the $m \times m$ matrix $A B$ cannot have full rank as $\operatorname{rank}(A B) \leq \operatorname{rank}(A) \leq n<m$.

We present two proofs of the formula. The first proof relies on the exterior algebra, and the second proof makes use of characteristic polynomials.

Via exterior powers

Let $m<n$. The $m \times n$ matrix A can be interpreted as a linear map $L_{A}: \mathbf{k}^{n} \rightarrow \mathbf{k}^{m}$, where \mathbf{k} is a field. We shall investigate what maps the $m \times m$ matrices $A_{[m] \times S}$ and $B_{S \times[m]}$ represent. Denote by e_{1}, \ldots, e_{n} the standard basis for \mathbf{k}^{n} and fix $S=\left\{s_{1}, \ldots, s_{m}\right\}$ with $1 \leq s_{1}<\cdots<s_{m} \leq n$. We define an m-dimensional subspace of \mathbf{k}^{n} by

$$
V_{S}:=\operatorname{span}\left\{e_{s_{1}}, \ldots, e_{s_{m}}\right\} \subseteq \mathbf{k}^{n} .
$$

A natural way to obtain a map between m-dimensional spaces from L_{A} is by first applying some inclusion $\mathbf{k}^{m} \hookrightarrow \mathbf{k}^{n}$ before applying L_{A}. Similarly, since L_{B} is a map $\mathbf{k}^{m} \rightarrow \mathbf{k}^{n}$, it is natural to apply a projection $\mathbf{k}^{n} \rightarrow \mathbf{k}^{m}$ after applying L_{B} to obtain a map between m-dimensional spaces. We are thus led to consider the maps

$$
V_{S} \xrightarrow{\iota_{S}} \mathbf{k}^{n} \xrightarrow{L_{A}} \mathbf{k}^{m}
$$

where t_{S} denotes the natural inclusion, and

$$
\mathbf{k}^{m} \xrightarrow{L_{B}} \mathbf{k}^{n} \xrightarrow{\pi_{S}} V_{S}
$$

where π_{S} denotes the natural projection onto V_{S}. Identifying $\mathbf{k}^{m} \cong V_{S}$ by $e_{i} \mapsto e_{S_{i}}$, we find that $L_{A} \circ \iota_{S}$ and $\pi_{S} \circ L_{B}$ are represented by $A_{[m] \times S}$ and $B_{S \times[m]}$ respectively. (This fact is perhaps best appreciated with a concrete example as given in the margin, noting that multiplying a matrix on the right gives linear combinations of columns while multiplying on the left gives linear combinations of rows.) Passing to the m-th exterior power for L_{B}, we get

$$
\left(\Lambda^{m}\left(\pi_{S} L_{B}\right)\right)\left(e_{1} \wedge \cdots \wedge e_{m}\right)=\operatorname{det}\left(B_{S \times[m]}\right) e_{S_{1}} \wedge \cdots \wedge e_{S_{m}}
$$

Since $\Lambda^{m}\left(\pi_{S} L_{B}\right)=\Lambda^{m} \pi_{S} \circ \Lambda^{m} L_{B}$, it follows that

$$
\left(\Lambda^{m} L_{B}\right)\left(e_{1} \wedge \cdots \wedge e_{m}\right)=\sum_{\substack{S=\left\{s_{1}, \ldots, s_{m}\right\} \\ 1 \leq s_{1}<\cdots<s_{m} \leq n}} \operatorname{det}\left(B_{S \times[m]}\right) e_{s_{1}} \wedge \cdots \wedge e_{s_{m}}
$$

Since the m-th exterior power for L_{A} gives

$$
\left(\Lambda^{m} L_{A}\right)\left(e_{s_{1}} \wedge \cdots \wedge e_{s_{m}}\right)=\operatorname{det}\left(A_{[m] \times S}\right) e_{1} \wedge \cdots \wedge e_{m}
$$

where we have once again identified $\mathbf{k}^{m} \cong V_{S}$ as above, we compute

$$
\begin{aligned}
& \left(\Lambda^{m} L_{A B}\right)\left(e_{1} \wedge \cdots \wedge e_{m}\right) \\
& \quad=\left(\Lambda^{m} L_{A}\right) \sum_{\substack{S=\left\{s_{1}, \ldots, s_{m}\right\} \\
1 \leq s_{1}<\cdots<s_{m} \leq n}} \operatorname{det}\left(B_{S \times[m]}\right) e_{S_{1}} \wedge \cdots \wedge e_{s_{m}} \\
& \quad=\sum_{\substack{S=\left\{s_{1}, \ldots, s_{m}\right\} \\
1 \leq s_{1}<\cdots<s_{m} \leq n}} \operatorname{det}\left(B_{S \times[m]}\right)\left(\Lambda^{m} L_{A}\right)\left(e_{S_{1}} \wedge \cdots \wedge e_{S_{m}}\right) \\
& \quad=\left(\sum_{\substack{ \\
S \subseteq(n n) \\
m}} \operatorname{det}\left(A_{[m] \times S}\right) \operatorname{det}\left(B_{S \times[m]}\right)\right) e_{1} \wedge \cdots \wedge e_{m} .
\end{aligned}
$$

Via the characteristic polynomial

Given an $n \times n$ matrix X, we work with the polynomial $\operatorname{det}\left(z I_{n}+X\right)$ in z whose coefficients are those of the characteristic polynomial, without the signs for convenience. We first show that the coefficient of z^{n-m} in this polynomial is equal to the sum of $m \times m$ principal minors of X, where $1 \leq m \leq n$. We compute

$$
\begin{aligned}
\operatorname{det}\left(z I_{n}+X\right) & =\sum_{\sigma \in \mathfrak{S}_{n}}(\operatorname{sgn} \sigma) \prod_{1 \leq m \leq n}\left(z \delta_{m, \sigma(m)}+X_{m, \sigma(m)}\right) \\
& =\sum_{\sigma \in \mathfrak{S}_{n}}(\operatorname{sgn} \sigma) \sum_{S \subseteq[n]} \prod_{i \in S} X_{i, \sigma(i)} \prod_{j \in[n]-S} z \delta_{j, \sigma(j)} \\
& =\sum_{S \subseteq[n]} \sum_{\sigma \in \mathfrak{S}_{n}}(\operatorname{sgn} \sigma) \prod_{i \in S} X_{i, \sigma(i)} \prod_{j \in[n]-S} z \delta_{j, \sigma(j)} \\
& =\sum_{S \subseteq[n]} z^{n-|S|} \sum_{\sigma \in \mathfrak{S}_{S}}(\operatorname{sgn} \sigma) \prod_{i \in S} X_{i, \sigma(i)} \\
& =\sum_{S \subseteq[n]} z^{n-|S|} \operatorname{det}\left(X_{S \times S}\right) \\
& =\sum_{0 \leq m \leq n} z^{n-m} \sum_{S \in\left({ }_{m}^{[n]}\right)} \operatorname{det}\left(X_{S \times S}\right) .
\end{aligned}
$$

An example with $m=2, n=3$, and $S=\{1,3\} \subseteq[3]$. We have naturally identified $\mathbf{k}^{m} \cong V_{S}$ by $e_{i} \mapsto e_{s_{i}}$.

$$
L_{A} \circ \iota_{S}=L_{A_{[2] \times S}}:
$$

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right)
$$

$$
\pi_{S} \circ L_{B}=L_{B_{S \times[2]}}
$$

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right)=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{31} & b_{32}
\end{array}\right)
$$

Before proving the Cauchy-Binet formula, we will need the identity

$$
\operatorname{det}\left(z I_{n}+B A\right)=z^{n-m} \operatorname{det}\left(z I_{m}+A B\right)
$$

where $m \leq n$, and A and B are $m \times n$ and $n \times m$ matrices respectively. We first show the result for when $z=1$ and $m=n$. In this case, the identity reads $\operatorname{det}\left(I_{m}+B A\right)=\operatorname{det}\left(I_{m}+A B\right)$. We may consider the identity $\operatorname{det}\left(\left(I_{m}+B A\right) B\right)=\operatorname{det}\left(B\left(I_{m}+A B\right)\right)$ as a polynomial identity in the domain $\mathbf{Z}\left[a_{i j}, b_{i j}\right]$, where we may cancel $\operatorname{det} B$ from both sides to obtain the result. We may then apply the result over any field via the universal property of polynomial rings, sending each indeterminate $a_{i j}$ to the field element $a_{i j} \in \mathbf{k}$. We may then extend the result to when $m<n$ by padding the rectangular matrices with zeroes to form square matrices. In detail, we get

$$
\left(\begin{array}{ll}
B & 0_{n \times(n-m)}
\end{array}\right)\binom{A}{0_{(n-m) \times n}}=B A
$$

and

$$
\binom{A}{0_{(n-m) \times n}}\left(\begin{array}{ll}
B & 0_{n \times(n-m)}
\end{array}\right)=\left(\begin{array}{cc}
A B & 0_{m \times(n-m)} \\
0_{(n-m) \times m} & 0_{(n-m) \times(n-m)}
\end{array}\right),
$$

and the result follows since

$$
\operatorname{det}\left(\begin{array}{cc}
I_{m}+A B & 0 \\
0 & I_{n-m}
\end{array}\right)=\operatorname{det}\left(I_{m}+A B\right) \operatorname{det}\left(I_{n-m}\right) \text {, }
$$

which can be seen by using the Leibniz permutation expansion of the determinant. Finally, for $z \neq 1$, we employ a scaling argument. The case for $z=0$ is left as an exercise; consider $z \neq 0$. We set $A^{\prime}:=z^{-1} A$, and compute

$$
\begin{aligned}
\operatorname{det}\left(z I_{n}+B A\right) & =\operatorname{det}\left(z I_{n}+z B A^{\prime}\right) \\
& =z^{n} \operatorname{det}\left(I_{n}+B A^{\prime}\right) \\
& =z^{n} \operatorname{det}\left(I_{m}+A^{\prime} B\right) \\
& =z^{n-m} \operatorname{det}\left(z I_{m}+z A^{\prime} B\right) \\
& =z^{n-m} \operatorname{det}\left(z I_{m}+A B\right) .
\end{aligned}
$$

The Cauchy-Binet formula is now within our reach. Comparing the coefficients of z^{n-m} in $\operatorname{det}\left(z I_{n}+B A\right)=z^{n-m} \operatorname{det}\left(z I_{m}+A B\right)$, we find that the sum of principal $m \times m$ minors of $B A$ is equal to $\operatorname{det}(A B)$; that is,

$$
\operatorname{det}(A B)=\sum_{S \in\binom{[n]}{m}} \operatorname{det}\left((B A)_{S \times S}\right)
$$

If $S=\left\{s_{1}, \ldots, s_{m}\right\}$, then

$$
\begin{aligned}
\left((B A)_{S \times S}\right)_{i j} & =(B A)_{s_{i}, s_{j}} \\
& =\sum_{1 \leq k \leq m} B_{s_{i}, k} A_{k, s_{j}} \\
& =\sum_{1 \leq k \leq m}\left(B_{S \times[m]}\right)_{i, k}\left(A_{[m] \times S}\right)_{k, j} \\
& =\left(B_{S \times[m]} A_{[m] \times S}\right)_{i j},
\end{aligned}
$$

proving the result.

If one prefers to avoid such abstract nonsense proofs, one may simply note that $B\left(I_{m}+A B\right) B^{-1}=I_{m}+B A$, and thus the result holds for invertible B, which are dense in the space of $m \times m$ matrices.

