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1. Prologue: The Problem of Measure

Exercise in the proof of Lemma 1.1.2. We prove that

|I| = lim
N→∞

1

N
#(I ∩ 1

N
Z).

Since [a, b] ∩ 1
NZ ∼= [Na,Nb] ∩ Z = {dNae, . . . , bNbc}, we have

#(I ∩ 1

N
Z) = bNbc − dNae+ 1.

Since Nb < bNbc+ 1 ≤ Nb+ 1 and Na ≤ dNae < Na+ 1, we have

Nb−Na− 1 < bNbc − dNae+ 1 ≤ Nb−Na+ 1,

so

b− a− 1

N
<
bNbc − dNae+ 1

N
≤ b− a+

1

N
.

The result follows from the squeeze theorem by sending N →∞.
Exercise 1.1.3. We first prove the result for d = 1. Suppose m′ : E(R)→ R+

obeys non-negativity, finite additivity and translation invariance. For n ≥ 1, we
have

c := m′([0, 1)) = m′

(
n⋃
i=1

[ i− 1

n
,
i

n

))

=
n∑
i=1

m′
([ i− 1

n
,
i

n

))
by finite additivity

=

n∑
i=1

m′
([

0,
1

n

))
by translation invariance

= nm′
([

0,
1

n

))
,

and so m′([0, 1/n)) = c/n. Thus m′([0, k/n)) = ck/n. Note that non-negativity and
finite additivity imply monotonicity, which in turn implies that m′({0}) < 1/n for
all n, so that m′({x}) = 0 for all x ∈ R by translation invariance.

Since elementary sets are finite unions of disjoint boxes, it suffices to show that
m′(B) = cm(B) for all boxes B. Since singletons have zero measure as shown above,
it suffices by translation invariance to prove the result for B = [0, a) where a > 0.
By writing [0, a) = [0, bac) ∪ [bac, a), we see that it suffices to consider 0 < a < 1.
By considering a sequence in Q ∩ [0, a) converging to a, monotonicity yields the
bound m′([0, a)) ≥ ca, and we may also obtain m′([0, a)) ≤ ca analogously.

For Rd we find m′([0, 1/n)d) = c/nd (recall
⋃
iAi ×

⋃
j Bj ≈

⋃
i,j Ai × Bj).

Similar arguments show that m′(
∏

1≤i≤d[0, ki/n)) = (c/nd)(
∏

1≤i≤d ki), and that
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degenerate elementary sets (where one of the factor intervals is a singleton) have
zero measure under m′. We may finish off with a similar limiting argument:

m′

( ∏
1≤i≤d

[0, ai)

)
≥ sup

{
m′

( ∏
1≤i≤d

[0, qi)

)
: qi ∈ Q ∩ [0, ai)

}
= c

∏
1≤i≤d

ai.

Exercise 1.1.4. Suppose E1 ⊂ Rd1 and E2 ⊂ Rd2 are elementary sets. Then
E1 =

⋃
iBi and E2 =

⋃
j Bj , where the Bi and Bj denote boxes, and thus E1×E2 =⋃

i,j Bi×Bj . Since the product of boxes is a box, it follows that E1×E2 is elementary.

To show md1+d2(E1 × E2) = md1(E1)md2(E2), we write E1 and E2 as unions of
disjoint boxes Bi and Bj , so that E1 × E2 =

⋃
i,j Bi × Bj is a union of disjoint

boxes. Then, we have

md1+d2(E1 × E2) =
∑
i,j

|Bi||Bj | =
(∑

i

|Bi|
)(∑

j

|Bj |
)

= md1(E1)md2(E2)

as needed.
Digression: Could we have a result along the lines of this? Let S ⊂ {1, . . . , d} and

write πS(Rd) := {(x1, . . . , xd) ∈ Rd : xi 6= 0 implies i ∈ S}. Then πS(Rd) ≈ R|S|

canonically, and so, writing T = {1, . . . , d} − S, we have Rd ≈ πS(Rd) × πT (Rd)
canonically. For example with {1, 3} ⊂ R3, we have π{1,3}(R

3) = {(x, 0, z) ∈ R3}
and so there is a natural identification of boxes [a, b]× [c, d] ≈ [a, b]× {0} × [c, d].
Further, together with the complementary identification π{2}(R

3) = {(0, y, 0) ∈ R3}
and its associated correspondence of boxes [e, f ] ≈ {0} × [e, f ] × {0}, there is a
correspondence of products of boxes in a canonical way where products of boxes
from both identified subspaces correspond to boxes in R3. (See the appendix.)

Exercise 1.1.5. To show (1) implies (2), suppose E is Jordan measurable, and
let ε > 0. Then there exist elementary sets A ⊂ E ⊂ B with m(A) > m(E)− ε/2
and m(B) < m(E) + ε/2, so that m(B−A) = m(B)−m(A) ≤ ε by finite additivity
of elementary measure.

To show (2) implies (3), let A ⊂ E ⊂ B be elementary sets with m(B −A) ≤ ε.
Then B4A = B −A ⊃ B − E, and so

m∗,(J)(B4E) = inf
S⊃B−E
S elem.

m(S) ≤ m(B −A) ≤ ε.

To show (3) implies (1), let A be an elementary set with m∗,(J)(A4E) ≤ ε/4.
Then there exists an elementary set B ⊃ A4E with m(B) < ε/2. This gives us two
elementary sets A−B ⊂ E ⊂ A ∪B. Since

m∗,(J)(E) ≥ m(A−B) ≥ m(A)−m(B) > m(A)− ε/2

and

m∗,(J)(E) ≤ m(A ∪B) ≤ m(A) +m(B) < m(A) + ε/2,

we obtain m∗,(J)(E)−m∗,(J)(E) < ε. It follows that E is Jordan measurable.
Exercise 1.1.6. (1) We begin by proving that E ∪ F is Jordan measurable.

By exercise 1.1.5(2), there exist elementary sets A,B,A′, B′ with A ⊂ E ⊂ B,
A′ ⊂ F ⊂ B′, m(B−A) ≤ ε/2, and m(B′−A′) ≤ ε/2. Then A∪A′ ⊂ E∪F ⊂ B∪B′.
Since B ∪ B′ − A ∪ A′ ⊂ (B − A) ∪ (B′ − A′), it follows from already established
properties of elementary measure that

m(B ∪B′ −A ∪A′) ≤ m((B −A) ∪ (B′ −A′))
≤ m(B −A) +m(B′ −A′)
≤ ε,
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and so applying exercise 1.1.5(2) again shows that E ∪ F is Jordan measurable.
Showing that E ∩ F is Jordan measurable is quite similar — one uses the inclusion

B ∩B′ −A ∩A′ = (B ∩B′ −A) ∪ (B ∩B′ −A′) ⊂ (B −A) ∪ (B′ −A′).

Showing that E−F is Jordan measurable uses the fact that A−B′ ⊂ E−F ⊂ B−A′
and

(B −A′)− (A−B′) ⊂ (B −A) ∪ (B′ −A′).
Finally, E4F = E ∪ F − E ∩ F and is thus Jordan measurable.

(2) We have m(E) ≥ m∗,(J)(E), which is a supremum over elementary measures
of elementary sets, which are clearly non-negative by definition.

(3) Let A ⊂ E ⊂ B, A′ ⊂ F ⊂ B′ be elementary sets with

m(B)− ε/2 < m(E) < m(A) + ε/2

and

m(B′)− ε/2 < m(F ) < m(A′) + ε/2.

Then, E ∪ F ⊃ A ∪A′, and so

m(E ∪ F ) ≥ m(A ∪A′) = m(A) +m(A′) > m(E) +m(F )− ε.

Similarly, E ∪ F ⊂ B ∪B′, and we have

m(E ∪ F ) ≤ m(B ∪B′) ≤ m(B) +m(B′) < m(E) +m(F ) + ε.

Since ε was arbitrary, this gives m(E ∪ F ) = m(E) +m(F ) as required.
(4) We have E ] (F −E) = F , where ] denotes a disjoint union. By (1), F −E is

Jordan measurable, and so m(E) +m(F −E) = m(F ) by (3). Since m(F −E) ≥ 0
by (2), we conclude that m(E) ≤ m(F ).

(5) Since E ∪ F = E ] (F − E) and F − E ⊂ F , we have

m(E ∪ F ) = m(E) +m(F − E) ≤ m(E) +m(F ).

(6) This follows immediately from translation invariance of elementary sets —
if A ⊂ E with A elementary, then A + x ⊂ E + x with A + x elementary and
m(A+ x) = m(A); similarly for B ⊃ E.

Exercise 1.1.7. (1) Let f : B → R be a continuous function on a closed box
B ⊂ Rd, and denote by Γf := {(x, f(x)) : x ∈ B} ⊂ Rd+1 its graph. Since the
inner measure is at most the outer measure, the Jordan measurability of Γf is
immediately established if we find for every ε > 0 an elementary set of measure
less than ε that contains Γf . Let ε > 0. Since continuous functions on compact
sets are uniformly continuous, there exists δ > 0 such that |f(x)− f(y)| < ε/m(B)
whenever ‖x− y‖ < δ and x, y ∈ B. Partition B into boxes of diameter less than
δ. Each of these boxes Bα ⊂ Rd gives rise to a box Bα × Iα ⊂ Rd+1 containing
{(x, f(x)) : x ∈ B′} ⊂ Γf with m(Iα) < ε/m(B) by uniform continuity. It follows
that

⋃
α(Bα × Iα) is an elementary set of measure less than ε that contains Γf . We

conclude that the graph of f is Jordan measurable with Jordan measure zero.
(2) This is essentially the fact that bounded continuous functions are Riemann

integrable. Alternatively, letting U := {(x, t) : x ∈ B and 0 ≤ t ≤ f(x)} ⊂ Rd+1,
one may consider the sets (as defined in (1))

U −
⋃
α

(Bα × Iα) ⊂ U ⊂ U ∪
⋃
α

(Bα × Iα),

which may be shown to be elementary.
Exercise 1.1.8. (1) Suppose AB is horizontal. Then we may translate AB onto

the x-axis and use exercise 1.1.7(2) to prove that ABC is Jordan measurable. Note
that if the x-coordinate of C does not lie between the x-coordinates of A and B,
we may just regard ABC as the difference of two right-angled triangles AC ′C and
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BC ′C where C ′ is C projected onto the x-axis. We must then add back the line
BC, but this has Jordan measure zero by exercise 1.1.7(1).

For the general case translate the triangle so that one point, call it A without loss
of generality, lies on the x-axis, and the other two points are above it. Then this
can be thought of as the area under a graph again with one or two right triangles
removed and lines added appropriately, once again by exercise 1.1.7. It follows that
solid triangles are Jordan measurable.

(2) This boils down to finding the area under a line y = mx using the standard
Riemann sums arguments.

Exercise 1.1.9. Suppose P ⊂ Rd be a compact convex polytope contained in a
closed box B. We may write P =

⋂
i(B∩Hi), where each Hi := {x ∈ Rd : x·vi ≤ ci}

is a closed half-space, and so it suffices to prove that sets of the form B ∩Hi are
Jordan measurable. We may identify Rd−1 ⊂ Rd as the subset with xi = 0. Pick an
identification where, when the projection of the hyperplane defined by x · v = c onto
the identified Rd−1 is surjective. Then, projecting the box B down to π(B) ⊂ Rd−1,
we may use exercise 1.1.7(2) to obtain our result by considering B∩Hi as the region
under an appropriate graph.

Exercise 1.1.10. (1) To show that balls are Jordan measurable, it suffices to
translate the standard ball B(x, r) by r units in xd so that it lies in the closed upper
half space, then treat it as the difference of two graphs. For example, when d = 2,
we consider the difference of the regions below the graphs of functions r±

√
r2 − x2.

Now, if we define the scaling by r of an interval I = [a, b] by rI := [ra, rb] (and
similarly for open and half-closed intervals), then m(rI) = rm(I). We may extend
this to a box B =

∏
1≤j≤d Ij to get rB :=

∏
1≤j≤d rIj and m(rB) = rdm(B), and

similarly to elementary sets A =
⋃
iBi where rA :=

⋃
i rBi and m(rA) = rdm(A).

Denote the open ball of radius r of dimension d centered at 0 by Bd(r) ⊂ Rd+1,
and let cd := m(Bd(1)). We will show that m(Bd(r)) = cdr

d. Let A ⊂ Bd(1) ⊂ B
be elementary sets with

cd − ε/rd < m(A) and m(B) < cd + ε/rd.

Then, rA ⊂ Bd(r) ⊂ rB are elementary sets, and so

cdr
d − ε < rdm(A) = m(rA)

≤ m(Bd(r))

≤ m(rB) = rdm(B) < cdr
d + ε.

Since ε was arbitrary we conclude that m(Bd(r)) = cdr
d as needed.

(2) The bound (
2√
d

)d
≤ cd ≤ 2d

is easily established by inscribing and circumscribing cubes in the unit sphere. For
the inner cube, note that its diameter is 2, so its side length is 2/

√
d and its volume

is (2/
√
d)d. (In fact, cd = 1

d
2πd/2

Γ(d/2) .)

Exercise 1.1.11. (1) Recall that exercise 1.1.3 tells us that any mapm′ : E(Rd)→
R satisfying nonnegativity, finite additivity and translation invariance is necessarily
a scalar multiple of elementary measure. We prove that m ◦L satisfies these proper-
ties. The nonnegativity of m ◦ L follows immediately from the nonnegativity of m.
If L is invertible, then (m◦L)(E]F ) = m(L(E)]L(F )) = (m◦L)(E)+(m◦L)(F ).
Otherwise, we claim that m ◦ L = 0. Indeed, L(E) must be a bounded subset
of a hyperplane S ( Rd, and L(E) must be contained in some closed box B, so
m(L(E)) ≤ m(B ∩ S). Choosing an appropriate identification Rd−1 ⊂ Rd as in
exercise 1.1.9, we see that B ∩ S is the graph of a linear (and thus continuous)
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function, and so m(B ∩ S) = 0 by exercise 1.1.7(1). Finally, translation invariance
is immediate from the linearity of L together with the translation invariance of m —
we get m(L(E+x)) = m(L(E) +L(x)) = m(L(E)). We conclude that m ◦L = Dm
for some constant D ≥ 0.

It is time for a digression. I feel somewhat guilty for the handwavy treatment of
the measure zero case both above and in exercise 1.1.9, so I shall make up for it to
a small extent by providing some examples. Take R3 with

T =

0 −1 0
0 1 0
0 0 1

 and T ′ =

1 0 0
0 1 0
1 1 0

 .

These are rank 2 matrices; the projection of im(T ) onto the xy-plane is not surjective
whereas the projection of im(T ′) onto the xy-plane is surjective. If we have an
elementary set E ⊂ R3, then imT ′(E) ⊂ im(T ′) ∩B, where B = [a1, b1]× [a2, b2]×
[a3, b3] ⊂ R3 is a closed box containing imT ′(E) (which exists, since linear maps
are bounded). We may then define the closed box π(B) := [a1, b1] × [a2, b2] ⊂
{(x, y, 0) ∈ R3 : x, y ∈ R} ≈ R2 and f : π(B) → R defined by f(x, y) := x + y.
Then imT ′(E) ⊂ Γf ⊂ im(T ′), and so we have m(imT ′(E)) ≤ m(Γf ) = 0 by
exercise 1.1.7(1). For im(T ) we may project onto the xz-plane instead, and our
mapping will be (x, z) 7→ −x. In general, if we are given a (d − 1)-dimensional
subspace of Rd represented as the image of a noninvertible linear operator T on
Rd, we can always find d− 1 basis vectors {ei}1≤i≤d;i 6=j such that {Tei}1≤i≤d;i 6=j is
independent. We may thus project onto {(x1, . . . , xd) ∈ Rd : xj = 0} =: S ≈ Rd−1,
and treat Rd ≈ S ×R using exercise 1.1.4. (I apologize for how sloppy/handwavy
this treatment is. See also the appendix to this section for more thoughts.)

(2) Suppose E ⊂ Rd is Jordan measurable. If L is not invertible, then L(E)
is Jordan measurable with Jordan measure zero as argued in (1), and D = 0, so
m(L(E)) = Dm(E). Henceforth we may assume that L is invertible. Let D > 0
be such that m(L(E′)) = Dm(E′), where E′ denotes any elementary set. We first
prove that L(E) is Jordan measurable. Let A ⊂ E ⊂ B be elementary sets with
m(B−A) ≤ ε/4D, or m(B) ≤ m(A) + ε/4D. We have L(A) ⊂ L(E) ⊂ L(B). Since
L(A) and L(B) are Jordan measurable, we may choose elementary sets A′ and B′

such that A′ ⊂ L(A) ⊂ L(E) ⊂ L(B) ⊂ B′ with

m(A′) > m(L(A))− ε/2 = Dm(A)− ε/2
and

m(B′) < m(L(B)) + ε/4 = Dm(B) + ε/4 ≤ Dm(A) + ε/2.

It follows that

m(B′ −A′) = m(B′)−m(A′) < ε.

Since ε was arbitrary, we conclude that L(E) is Jordan measurable.
Now we prove that m(L(E)) = Dm(E). Let A ⊂ E ⊂ B be elementary sets with

m(E) − ε/D < m(A) and m(B) < m(E) + ε/D. We have L(A) ⊂ L(E) ⊂ L(B),
and so

Dm(E)− ε < Dm(A) = m(L(A))

≤ m(L(E))

≤ m(L(B)) = Dm(B) < Dm(E) + ε.

Since ε was arbitrary, we conclude that m(L(E)) = Dm(E).
(3) The case for dimension d = 1 is straightforward as all linear maps R→ R are

scalar multiplication. Henceforth fix d ≥ 2. We first prove m(L(E)) = |det(L)|m(E)
for Jordan measurable E ⊂ Rd and elementary matrices L as in Gaussian elimination.
Recall the three classes of elementary matrices:
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(A) Row swapping. For 1 ≤ i < j ≤ d, we define Ai,j to be the linear operator
that swaps entries i and j of an input vector.

(B) Row scaling. For α 6= 0 and 1 ≤ i ≤ d, we define Bαi to be the linear
operator that scales row i of an input vector by α.

(C) Row adding. For α 6= 0 and 1 ≤ i, j ≤ d, we define Cαi,j to be the linear
operator that adds α times row i to row j.

It suffices to prove that m(L(Id)) = |det(L)|, where Id = [0, 1]d is the unit d-cube.
For row swapping matrices Ai,j , we know |det(Ai,j)| = | − 1| = 1 and Ai,j(I

d) = Id.
For row scaling matrices Bαi , we know |det(Bαi )| = α and

Bαi (Id) = [0, 1]i−1 × [0, α]× [0, 1]d−i,

so m(Bαi (Id)) = α. For row adding matrices Cαi,j , we first consider the 2-dimensional

case. The image of a matrix like ( 1 α
0 1 ) is a parallelogram that can be realized as a

rectangle with two right triangles removed. In particular, the rectangle has vertices
(0, 0), (α+ 1, 0), (α+ 1, 1) and (0, 1). The first triangle has vertices (1, 0), (α+ 1, 0)
and (α + 1, 1), and the second triangle has vertices (0, 0), (0, 1) and (α, 1). The
boundary lines have zero measure since they are graphs of appropriate functions, so
the area of the parallelogram works out to be (α+ 1)− α/2− α/2 = 1. This is the
essential case — in higher dimensions, instead of working with triangles, we end
up dealing with the product of triangles with cubes Ik. Let d ≥ 3. If we define for
S ⊂ {1, . . . , d} the identified subspace

πS(Rd) := {(x1, . . . , xd) ∈ Rd : xi 6= 0 implies i ∈ S} ≈ R|S|,

then we obtain a canonical correspondence Rd ≈ π{i,j}(Rd)×Rd−2, where

π{i,j}(C
α
i,j) ≈ {(xj + αxi, xi) : xi, xj ∈ I} =: P

is a parallelogram with measure one as argued in the 2-dimensional case. It follows
that Cαi,j ≈ π{i,j}(Cαi,j)×Id−2 and thus has measure one as well. Since det(Cαi,j) = 1,
the result follows. We conclude that m(L(E)) = |det(L)|m(E) whenever L is
elementary and E is Jordan measurable.

Notice that if m(L(E)) = Dm(E) and m(L′(E)) = D′m(E) for elementary L, L′,
then m(L(L′(E))) = Dm(L′(E)) = DD′m(E). By Gaussian elimination, we may
write any invertible linear map L as the product L1 . . . Lk of elementary matrices.
Since |det(AB)| = |det(A)|| det(B)|, we compute

m(L(E)) = m((L1 . . . Lk)(E)) =
( ∏

1≤i≤k

|det(Li)|
)
m(E) = |det(L)|m(E),

and we are done.
Exercise 1.1.12. Suppose F is a Jordan null set and E ⊂ F is an arbitrary

subset. Then, we may find an elementary set A ⊃ F with m(A) ≤ ε. It follows
that m∗,(J)(E) ≤ ε. Since ε is arbitrary, it follows that m∗,(J)(E) = 0. But then
0 ≤ m∗,(J)(E) ≤ m∗,(J)(E), so the outer and inner measures are identically zero.
We conclude that E is a Jordan null set.

Exercise 1.1.13. Recall that we have

m(E) = lim
N→∞

1

Nd
#
(
E ∩ 1

N
Zd
)

for elementary sets E ⊂ Rd. We shall prove it for Jordan measurable sets.
Let E ⊂ Rd be Jordan measurable, and let A ⊂ E ⊂ B be elementary sets with

m(B) ≤ m(A) + ε/2. Pick large N with∣∣∣m(A)− 1

nd
#
(
A ∩ 1

n
Zd
)∣∣∣ < ε

2
and

∣∣∣m(B)− 1

nd
#
(
B ∩ 1

n
Zd
)∣∣∣ < ε

2
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whenever n ≥ N . Then,

m(E)− 1

nd
#
(
E ∩ 1

n
Zd
)
≤ m(B)− 1

nd
#
(
A ∩ 1

n
Zd
)

≤ m(A)− 1

nd
#
(
A ∩ 1

n
Zd
)

+ ε/2

< ε

and

m(E)− 1

nd
#
(
E ∩ 1

n
Zd
)
≥ m(A)− 1

nd
#
(
B ∩ 1

n
Zd
)

≥ m(B)− 1

nd
#
(
B ∩ 1

n
Zd
)
− ε/2

> −ε

whenever n ≥ N . Since ε is arbitrary, the result follows.
Exercise 1.1.14. In this exercise, we investigate the epsilon entropy formulation

of Jordan measurability. A dyadic cube is a half-open box of the form[
i1
2n
,
i1 + 1

2n

)
× · · · ×

[
id
2n
,
id + 1

2n

)
for some integers n, i1, . . . , id. Let E ⊂ Rd be a bounded set. For each integer
n, let E∗(E, 2−n) denote the number of dyadic cubes of sidelength 2−n that are
contained in E, and let E∗(E, 2−n) be the number of dyadic cubes of sidelength
2−n that intersect E. Denote by S∗(E, 2−n) ⊂ E the union of dyadic cubes of
sidelength 2−n contained in E, and S∗(E, 2−n) ⊃ E the union of dyadic cubes
of sidelength 2−n intersecting E. These sets are unions of boxes and are thus
elementary. Before moving on, we first note the following identities for bounded
sets E,F ⊂ Rd concerning S∗ (analogous identities hold for S∗):

(1) m(S∗(E, 2−n)) = 2−dnE∗(E, 2−n)

(2) S∗(E, 2−n) ⊂ S∗(E, 2−m) if m > n

(3) S∗(E, 2−n) ∪ S∗(F, 2−n) ⊂ S∗(E ∪ F, 2−n)

(4) m(S∗(E, 2−n)) ≤ m∗,(J)(E)

(5) S∗(E, 2−n) ⊂ S∗(F, 2−n) if E ⊂ F

We now prove that E is Jordan measurable if and only if

lim
n→∞

2−dn
(
E∗(E, 2−n)− E∗(E, 2−n)

)
= 0,

or, equivalently (by (1)), if

(∗) lim
n→∞

(
m(S∗(E, 2−n))−m(S∗(E, 2−n))

)
= 0.

We start by using dyadic cubes to approximate an interval I = [a, b] ⊂ R. With n
fixed, we are interested in the defect I − S∗(I, 2−n). Since we may choose i with
i/2n < a ≤ (i+ 1)/2n, we see that the first dyadic cube in I is at most distance 2−n

from a. We may reason similarly with the endpoint to get

m(I − S∗(I, 2−n)) < 2 · 2−n = 2−n+1.

Generalizing to a box B = I1 × · · · × Id ⊂ Rd, we obtain

B − S∗(B, 2−n) =
⋃

1≤k≤d

(
I1 × · · · × Ik−1 × (Ik − S∗(Ik, 2−n))× Ik+1 × · · · × Id

)
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and consequently

m(B − S∗(B, 2−n)) ≤
∑

1≤k≤d

|I1| . . . |Ik−1| ·m(Ik − S∗(Ik, 2−n)) · |Ik+1| . . . |Id|

≤ 2−n+1m(B)
∑

1≤k≤d

1

|Ik|
→ 0

as n→∞.
We are now ready to estimate Jordan measurable sets with dyadic cubes. Suppose

E ⊂ Rd is Jordan measurable, let ε > 0, and let A ⊂ E be an elementary set with
m(A) > m(E) − ε/2. Write A =

⋃
1≤i≤M Bi as a disjoint union of boxes, where

each box is nondegenerate, discarding boxes if necessary. This does not affect
m(A), as we are discarding finitely many null sets. Choose large N such that
m(Bi − S∗(Bi, 2−n)) < ε/2M whenever n ≥ N and 1 ≤ i ≤M . It follows from (3)
that

m(S∗(E, 2−n)) ≥ m(S∗(A, 2−n))

≥
∑

1≤i≤M

m(S∗(Bi, 2−n))

>
∑

1≤i≤M

(
m(Bi)−

ε

2M

)
= m(A)− ε/2
> m(E)− ε

whenever n ≥ N . We deduce that limn→∞m(S∗(E, 2−n)) = m∗,(J)(E) = m(E).
One may develop the theory analogously for E∗ and S∗, this time considering

S∗(B, 2−n)−B and estimating E by elementary sets A ⊃ E. It then follows that

m(E) = lim
n→∞

m(S∗(E, 2−n)) = lim
n→∞

m(S∗(E, 2−n)),

and so (∗) holds.
Conversely, suppose (∗) holds. Then, since

m(S∗(E, 2−n)) ≤ m∗,(J)(E) ≤ m∗,(J)(E) ≤ m(S∗(E, 2−n)) <∞,

it follows from (∗) that m∗,(J)(E) = m∗,(J)(E), and so E is Jordan measurable as
needed.

Exercise 1.1.15. Suppose m′ : J (Rd) → R+ is a map from the collection
J (Rd) of Jordan measurable subsets of Rd to the non-negative reals that obeys
non-negativity, finite additivity and translation invariance. By exercise 1.1.3, we
have m′|E(Rd) = cm|E(Rd), where c = m′([0, 1)d). (This is like a density argument.)
Now let E be Jordan measurable; we will prove m′(E) = cm(E). If c = 0, then,
since Jordan measurable sets are bounded by definition, E ⊂ B for some box B,
and m′(E) ≤ m′(B) = 0m(B) = 0 as a consequence. Thus E is a Jordan null set
satisfying the identity. Otherwise, suppose c > 0 and let A ⊂ E be elementary
with m(A) > m(E) − ε/c. Then m′(E) ≥ m′(A) = cm(A) > cm(E) − ε, and so
m′(E) ≥ cm(E). Conversely, if B ⊃ E is elementary with m(B)− ε/c < m(E), then
cm(E) > cm(B)− ε = m′(B)− ε ≥ m′(E)− ε and so cm(E) ≥ m′(E) as needed.

Exercise 1.1.16. Suppose m(E1) and m(E2) are non-zero. (The case for
m(Ei) = 0 is left as an exercise.) Let A ⊂ E1 ⊂ B, A′ ⊂ E2 ⊂ B′ be elementary
sets with ε < 6m(E1)m(E2) and{

m(A) > m(E1)− ε/2m(E2) and m(A′) > m(E2)− ε/2m(E1);

m(B) < m(E1) + ε/3m(E2) and m(B′) < m(E2) + ε/3m(E1).
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Then, since A×A′ ⊂ E1 × E2 ⊂ B ×B′, we find by exercise 1.1.4 that{
m(A×A′) = m(A)m(A′) > m(E1)m(E2)− ε;
m(B ×B′) = m(B)m(B′) < m(E1)m(E2) + ε

and so m∗,(J)(E1 × E2) ≥ m(E1)m(E2) ≥ m∗,(J)(E1 × E2).

Exercise 1.1.18. (1) If A is an elementary set, then m(A) = m(A). This is

because
⋃
iXi =

⋃
iXi, and m(B) = m(B) for boxes B. In particular,

m(A) = m
(⋃
i

Bi

)
= m

(⋃
i

Bi

)
≤
∑
i

m(Bi) =
∑
i

m(Bi) = m(A).

Now, let E ⊂ Rd be bounded, and let E ⊂ A be elementary withm(A) < m(E)+ε.
Then E ⊂ A, and so

m∗,(J)(E) ≤ m(A) = m(A) < m(E) + ε.

Sending ε→ 0, we find m∗,(J)(E) ≤ m(E), and so m∗,(J)(E) = m∗,(J)(E) as desired.
(2) The proof is essentially dual to that of (1).
(3) Suppose E is Jordan measurable. By (1) and (2) we have

m∗,(J)(E
◦) = m(E) = m∗,(J)(E).

Since

m∗,(J)(E◦) ≤ m∗,(J)(E) = m∗,(J)(E
◦),

it follows that E◦ is Jordan measurable. Similarly, since

m∗,(J)(E) = m∗,(J)(E
◦) ≤ m∗,(J)(E),

it follows that E is Jordan measurable as well, and m(E◦) = m(E). We conclude
that ∂E is Jordan measurable, being the difference of Jordan measurable sets, and
has measure m(∂E) = m(E)−m(E◦) = 0.

The converse is trickier — I was unable to figure this out and had to look
it up unfortunately. Below I detail the outline given by Silvius Klein in https:

//wiki.math.ntnu.no/_media/tma4225/2015h/tma4225-f15-homework.pdf.
Suppose m∗,(J)(∂E) = 0, and let A ⊃ ∂E be an elementary set with measure

m(A) < ε. We may assume that A is open — if it isn’t, just take its closure A,
which has the same measure as A, and use the fact that every closed box B lies
in an open box of measure (1 + ε)m(B), which can be obtained by scaling B◦ and
translating appropriately. It follows that E −A is closed, and thus compact by the
boundedness of E.

Now E −A ⊂ E◦, and we may consider the cover of E −A consisting of all open
boxes in E◦ containing a point of E −A. We may then use compactness to obtain
a finite cover of E − A by these boxes, whose union is an elementary set B with
E −A ⊂ B ⊂ E◦.

It follows that E ⊂ A ∪B. Since A ∪B is elementary, we find

m∗,(J)(E) = m∗,(J)(E) < m(B) + ε ≤ m∗,(J)(E
◦) + ε = m∗,(J)(E) + ε.

Taking ε→ 0, we conclude that E is Jordan measurable.
(4) Denote by BRS := [0, 1]2 −Q2 the bullet-riddled square. Since ∅ ⊂ BRS ⊂

[0, 1]2, we see m∗,(J)(BRS) ≥ 0 and m∗,(J)(BRS) ≤ 1. The key fact is that every

non-empty open subset of Rd contains a rational point (of Qd) and an irrational
point (of Rd −Qd). So if m∗,(J)(BRS) > 0, then there exists an elementary set
A ⊂ BRS with m(A) > 0. Since A is the finite union of boxes, we must have
some non-empty open subset of A, which necessarily contains a rational point. The
argument is similar for showing that m∗,(J)(BRS) = 1, and for analogous results
for the set of bullets [0, 1]2 ∩Q2.

https://wiki.math.ntnu.no/_media/tma4225/2015h/tma4225-f15-homework.pdf
https://wiki.math.ntnu.no/_media/tma4225/2015h/tma4225-f15-homework.pdf
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Exercise 1.1.19. Let E ⊂ Rd be bounded and F ⊂ Rd be Jordan measurable.
We will prove the Carathéodory type identity

m∗,(J)(E) = m∗,(J)(E ∩ F ) +m∗,(J)(E − F ).

Suppose A ⊃ E is elementary with m(A) < m∗,(J)(E) + ε. Then A ∩ F ⊃ E ∩ F
and A−F ⊃ E−F are disjoint Jordan measurable sets with A = (A∩F )] (A−F ),
so m(A) = m(A ∩ F ) +m(A− F ). It follows that

m∗,(J)(E ∩ F ) +m∗,(J)(E − F ) ≤ m(A ∩ F ) +m(A− F ) = m(A) < m∗,(J)(E) + ε,

and so m∗,(J)(E ∩ F ) +m∗,(J)(E − F ) ≤ m∗,(J)(E).
Now suppose A ⊃ E ∩ F and B ⊃ E − F are elementary sets with

m(A) < m∗,(J)(E ∩ F ) + ε/2 and m(B) < m∗,(J)(E − F ) + ε/2.

Then A ∪B ⊃ E, and so

m∗,(J)(E) ≤ m(A ∪B) ≤ m(A) +m(B) < m∗,(J)(E ∩ F ) +m∗,(J)(E − F ) + ε,

and we conclude that m∗,(J)(E) ≤ m∗,(J)(E ∩ F ) +m∗,(J)(E − F ). This completes
the proof. (In general, we have m∗,(J)(A]B) ≤ m∗,(J)(A) +m∗,(J)(B) for bounded
sets A and B.)

Exercise 1.1.20. It suffices to prove that refining a partition preserves the
quantity

∑
i ci|Ii|, since we may then take the common refinement of two partitions

to show that they yield the same value. If an interval Ii of our partition is divided
into intervals Ii := Ii,1 ∪ · · · ∪ Ii,k, then f takes the same value ci on each Ii,j , and
so the contributed value to the summation is ci|Ii,1|+ · · ·+ ci|Ii,k| = ci|Ii|, and so
the quantity is preserved.

Exercise 1.1.21. (1) Suppose f is piecewise constant on [a, b] = I1 ∪ · · · ∪ In,
so that it takes the constant value ci on Ii. Then, given c ∈ R, clearly cf is
piecewise constant with the same partition, taking the value cci on Ii and satisfying

p.c.
∫ b
a
cf(x) dx = c p.c.

∫ b
a
f(x) dx. Given piecewise constant g : [a, b]→ R, we take

the common refinement of the partition associated to f and the partition associated
to g, so that [a, b] = I1 ∪ · · · ∪ In with f ≡ ci and g ≡ di on Ii. It follows that

f + g ≡ ci + di on Ii, so that p.c.
∫ b
a
f(x) + g(x) dx = p.c.

∫ b
a
f(x) dx+ p.c.

∫ b
a
g(x) dx.

(2) By (1), it suffices to show that the p.c. integral of a p.c. function h is
nonnegative whenever h is nonnegative. This is clear, since each ci is nonnegative.

(3) Write E as the finite union of disjoint intervals contained in [a, b], so that
E =

⋃
j Ij . Together with the intervals that form the elementary set [a, b] − E,

we obtain a partition of [a, b] on which 1E takes constant values on each interval
— namely, 1 on the intervals Ij , and 0 otherwise. It follows that 1E is piecewise

constant on [a, b], and we conclude that m(E) =
∑
j |Ij | = p.c.

∫ b
a

1E(x) dx.
Exercise 1.1.22. The following proof is rough but I believe the ideas are correct.

Suppose f is Riemann integrable. Let ε > 0. Then there exists δ > 0 such that

|R(f,P) −
∫ b
a
f(x) dx| < ε whenever ∆(P) ≤ δ. Fix a tagged partition P with

∆(P) ≤ δ — we sometimes call such a partition δ-fine. We use P to define two new
tagged partitions Plow and Phigh with the same points as P but different tags — in
particular, we define x∗i := infx∈[xi−1,xi] f(x) for Plow and x∗i := supx∈[xi−1,xi] f(x)
for Phigh. These new partitions satisfy ∆ ≤ δ, and so their Riemann sums are within

ε of
∫ b
a
f(x) dx. We see that Plow corresponds to a p.c. function bounded above

by f , whose p.c. integral is precisely the Riemann sum of Plow; similarly for Phigh.
(The mapping of the endpoints of intervals is inconsequential since both Riemann
and Darboux integrability and integral values are unaffected by changes to function
values at finitely many inputs, which is easily shown by induction.) It follows that

the Darboux integral D
∫ b
a
f(x) dx exists and is equal to the Riemann integral.
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Suppose now that f is Darboux integrable, and let g ≤ f and h ≥ f be p.c.
functions satisfying

p.c.

∫ b

a

h(x) dx− ε < D
∫ b

a

f(x) dx < p.c.

∫ b

a

g(x) dx+ ε.

Since functions differing at finitely many points are identical for the purposes
of Riemann and Darboux integration as noted earlier, we may assume that the
partitions associated to g and h contain no singletons, and thus correspond to tagged
partitions of [a, b]. Let P = (x0, . . . , xn) be their untagged common refinement. We
will require δ < inf1≤i≤n δxi, so that any subinterval of a δ-fine partition contains
at most one point of P . Our goal is to prove that, up to a negligible error, we have
g ≤ φ ≤ h. Fix a δ-fine partition P ′ = ((y0, . . . , ym), (y∗1 , . . . , y

∗
m)), denote by φ the

p.c. function that it induces, and write {1, . . . ,m} = I0 ] I1, where I0 consists of
all indices for which [yi−1, yi] contains no points of P, and I1 consists of all the
remaining indices (which necessarily contain exactly one point of P).

Let us first estimate the contributions to the Riemann sum for P ′ due to I0. If
i ∈ I0, then [yi−1, yi] is completely contained in some [xj−1, xj ], on which g and h
are constant. It follows that g(x) ≤ f(y∗i ) ≤ h(x) on [yi−1, yi], and so g ≤ φ ≤ h on
[yi−1, yi] as needed.

If i ∈ I1, so that yi−1 < xj < yi, where we are not very careful with endpoints
(since there are only finitely many). Write Ia(i) = [yi−1, xj) and Ib(i) = [xj , yi].
Then, either y∗i ∈ Ia(i), in which case f(x) may not be between g(x) and h(x) for
x ∈ Ib(i), or likewise with a(i) and b(i) switched. In either case, the error is bounded
above by 2Bδ, where B is a bound on g and h. Since |I1| ≤ n, the total error is
bounded by 2nBδ, and we may pick δ small enough so that 2nBδ < ε. It follows
that∣∣∣R(f,P ′)−D

∫ b

a

f(x) dx
∣∣∣ ≤ ∣∣∣R(f,P ′)− p.c.

∫ b

a

g(x) dx
∣∣∣+ ε

≤
∣∣∣∑
i∈I0

f(y∗i )δyi −
∑
i∈I0

ciδyi

∣∣∣
+
∣∣∣∑
i∈I1

f(y∗i )δyi −
∑
i∈I1

(ca(i)|Ia(i)|+ cb(i)|Ib(i)|)
∣∣∣+ ε

≤ 2ε+ 2nBδ

< 3ε,

and thus we conclude that f is Riemann integrable.
Exercise 1.1.25. (A sketch.) We prove the result for f ≥ 0. Suppose f is

Riemann integrable. Then it is Darboux integrable. First observe that for p.c.
functions g, the set Eg+ := {(x, t) : x ∈ [a, b], 0 ≤ t ≤ g(x)} is elementary, with

measure p.c.
∫ b
a
g(x) dx. Darboux integrability gives us p.c. functions g ≤ f ≤ h

within ε of
∫ b
a
f(x) dx; this yields inclusions Eg+ ⊂ E+ ⊂ Eh+, which show that

p.c.

∫ b

a

g(x) dx ≤ m∗,(J)(E+) and m∗,(J)(E+) ≤ p.c.

∫ b

a

h(x) dx.

It follows that E+ is Jordan measurable, with m(E+) =
∫ b
a
f(x) dx. The converse is

similar and also relies on the correspondence between p.c. functions and elementary
sets.
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Appendix to Section 1: Identifications of subspaces of Euclidean space

This section is a somewhat pedantic treatment of some issues that arise when one
identifies a proper subspace of Rd spanned by unit basis vectors ei1 , . . . , eik with Rk.
It is written primarily to assuage some of the author’s discomforts concerning certain
identifications. Suppose {S, T} is a partition of {1, . . . , d}, so that S∪T = {1, . . . , d}
and S ∩ T = ∅. Define

πS : Rd → {(x1, . . . , xd ∈ Rd : xi 6= 0 implies i ∈ S} ≈ R|S|

(x1, . . . , xd) 7→ (x1[1 ∈ S], . . . , xd[d ∈ S]),

where [P (x)] denotes Iverson’s bracket notation — it is equal to 1 if the proposition
P (x) is true, and 0 if it is false.

A box in πS(Rd) is defined to be a set of the form∏
1≤j≤d

[j ∈ S]Ij ,

where c[a, b] := [ca, cb]. For example, a box in π{1,3}(R
3), more commonly known

as the xz-plane in 3-dimensional space, is a set of the form [a1, b1]×{0}× [a3, b3] ⊂
π{1,3}(R

3). There is a straightforward correspondence between boxes of πS(Rd)

and boxes of R|S|; the forward direction is obtained by removing all the {0} factors.
(So [a1, b1]× {0} × [a3, b3] ⊂ π{1,3}(R3) corresponds to [a1, b1]× [a2, b2] ∈ R2.) We

thus may define the elementary measure of a box in πS(Rd) as the measure of the
box in R|S| it corresponds to. Given boxes B ⊂ πS(Rd) and B′ ⊂ πT (Rd), we
define the product box B×̄B′ ⊂ Rd by

B×̄B′ :=
∏

1≤j≤d

Ij ,

where

Ij =

{
πj(B) if j ∈ S;

πj(B
′) if j ∈ T .

Here πj : Rd → R is the projection onto the j-th factor defined by (x1, . . . , xd) 7→ xj .
For example, the boxes B = [a1, b1] × {0} × [a3, b3] ⊂ π{1,3}(R

3) and B′ = {0} ×
[a2, b2]× {0} ⊂ π{2}(R3) have product B×̄B′ = [a1, b1]× [a2, b2]× [a3, b3]. We also

then define πS(Rd)×̄πT (Rd) := Rd. To simplify our language, we will often say
things like: “identifying the subspace S spanned by e1 and e3 with R2, we see that
R3 ≈ S ×R. if [a1, b1]× [a2, b2] is a box in S and [a3, b3] ∈ R, then the product of
those boxes is [a1, b1]× [a3, b3]× [a2, b2] under our identifications.”

Most importantly for our purposes, we may prove a useful generalization of
exercises 1.1.4 and 1.1.7. Define elementary sets in πS(Rd) as finite unions of boxes
(where boxes in πS(Rd) are defined above). We may then define the elementary
measure of elementary sets in πS(Rd). We then have the following results, which are
proven in the same ways as their normal counterparts, just with clunkier notation:

Proposition. If E1 ⊂ πS(Rd) and E2 ⊂ πT (Rd) are elementary sets, then
E1×̄E2 ⊂ πS(Rd)×̄πT (Rd) = Rd is elementary, and m(E1×̄E2) = m(E1)m(E2).

Proposition. Suppose 1 ≤ i ≤ d+ 1, and define S = {i}, T = {1, . . . , d+ 1} − {i}.
Let B be a closed box in πT (Rd+1), and let f : πT (Rd+1) → R be a continuous
function.

(1) The graph {(x, f(x)) ∈ πT (Rd+1)× πS(Rd+1) = Rd+1 : x ∈ B} is Jordan
measurable in Rd+1 with Jordan measure zero.

(2) The set {(x, t) : x ∈ B; 0 ≤ t ≤ f(x)} is Jordan measurable.
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In conclusion, this whole business is rather pedantic and reminds me of how
working mathematicians casually abuse identifications such as Z ⊂ Q ⊂ R (which
appears to be very much justifiable); set theory also leads to things like 2 ∈ 3 as
‘technical artefacts’ of sorts. I guess this is motivation for type theory?
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2. Lebesgue Measure

Exercise 1.2.1. Enumerate Q2 ∩ [0, 1]2 by q1, q2, . . . . Then, although the sets
{qi} are Jordan measurable, the union

⋃
i≥1{qi} = Q2 ∩ [0, 1]2 is not measurable,

as we saw earlier. Similarly, the sets [0, 1]2 − {qi} are Jordan measurable, being the
difference of Jordan measurable sets. But their intersection is the bullet-riddled
square, which we showed was not Jordan measurable earlier. This demonstrates the
failure of Jordan measure to behave nicely with countable sets of objects, which
feature prominently in analysis, for example whenever sequences arise. We will
remedy this by introducing the Lebesgue measure shortly.

Exercise 1.2.2. Another flaw of the Jordan and Riemann theories is that we
may have sequences of Riemann integrable functions that converge pointwise to a
non-integrable function. For example, enumerating Q∩ [0, 1] = {q1, q2, . . . }, we may
define a sequence of functions fi : [0, 1]→ R by sending q1, . . . , qi to 0 and all other
inputs to 0. Then fi converges to the function

f(x) :=

{
0 if x ∈ Q,

1 if x ∈ R−Q.

Since f has uncountably many discontinuities, it is not Riemann integrable.
While this problem is resolved if one requires uniform continuity (the standard

proof involving the ‘ε/3 trick’), we will find it fruitful to investigate the problem
of ‘completing’ the gaps in the space of Riemann integrable functions, seeking a
theory that behaves well generally with respect to limits, much as one completes
the rationals to form the reals.

Exercise 1.2.3. (i) The empty set is contained in a singleton, which can be
thought of as the union of countably many copies the same degenerate box, which
has measure zero.

(ii) Any cover of F by boxes also covers E.
(iii) We show that Lebesgue outer measure m∗ satifies countable subadditivity;

that is, if E1, E2, · · · ⊂ Rd is a sequence of sets, then m∗(
⋃∞
n=1En) ≤

∑∞
n=1m

∗(En).
By the axiom of countable choice, we may choose for each n ≥ 1 a sequence of boxes
Bn,1, Bn,2, . . . whose union contains En such that

∑∞
i=1 |Bn,i| < m∗(En) + ε/2n.

Then (Bn,i)n,i≥1 is a countable set of boxes whose union contains
⋃∞
n=1En. It then

follows from Tonelli’s theorem for series that

m∗
( ∞⋃
n=1

En

)
≤
∑
n,i≥1

|Bn,i|

=

∞∑
n=1

∞∑
i=1

|Bn,i|

<

∞∑
n=1

(
m∗(En) +

ε

2n

)
=

∞∑
n=1

m∗(En) + ε.

Sending ε→ 0, we conclude that m∗(
⋃∞
n=1En) ≤

∑∞
n=1m

∗(En).
Exercise 1.2.4. Let E,F ⊂ Rd be disjoint. Suppose E is compact and F is

closed. We will prove dist(E,F ) > 0. Suppose contrapositively that dist(E,F ) = 0.
Since dist(E,F ) = 0, there exist sequences (xn)n≥1 ⊂ E and (yn)n≥1 ⊂ F with
|xn − yn| < 1/n for n ≥ 1. Since E is compact, the sequence (xn)n≥1 contains a
convergent subsequence (xni

)i≥1 that converges to a limit x. This limit x is in E as
E is closed. We will show that x ∈ F as well, so that E ∩ F is nonempty. Let ε > 0,
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and choose N such that |xni
− x| < ε/2 whenever i ≥ N . Then

|yni
− x| ≤ |yni

− xni
|+ |xni

− x| < 1

ni
+ ε/2

whenever i ≥ N . Since 1/n→ 0, this quantity can be made smaller than ε for large
i, and so we conclude that yni → x. But F is closed, and thus we have x ∈ F .

The compactness assumption is necessary — consider the graphs of the functions
x 7→ 1/x and x 7→ −1/x in R2.

Exercise 1.2.5. If E is unbounded, we have m∗(E) ≥ m∗,(J)(E) = ∞, and
so the claim holds trivially. Thus we may assume that E is bounded. Suppose
E =

⋃∞
n=1Bn, where the boxes Bn are almost disjoint. To prove m∗(E) = m∗,(J)(E),

it suffices by (1.2) to prove m∗(E) ≤ m∗,(J)(E). By Lemma 1.2.9, we have m∗(E) =∑∞
n=1 |Bn|. We prove

∑N
n=1 |Bn| ≤ m∗,(J)(E) for every finite N . Since

⋃N
n=1Bn is

elementary, it follows from the monotonicity of Jordan inner measure that

N∑
n=1

|Bn| = m
( N⋃
n=1

Bn

)
= m∗,(J)

( N⋃
n=1

Bn

)
≤ m∗,(J)(E).

We conclude that m∗(E) = m∗,(J)(E).
Exercise 1.2.6. Let E = [0, 1]−Q. Then m∗(E) ≥ m∗([0, 1])−m∗([0, 1] ∩Q)

by subadditivity. By Lemma 1.2.6, m∗([0, 1]) = 1. Since [0, 1] ∩Q is countable,
it has Lebesgue outer measure zero. It follows that m∗(E) ≥ 1. (In fact, since
E ⊂ [0, 1], monotonicity implies m∗(E) = 1.) But since Q is dense in R, the set E
cannot contain any non-empty open sets, and so we have supU⊂E,U openm

∗(U) = 0.
Exercise 1.2.7. Claim (i) is equivalent to (ii); this is our definition of Lebesgue

measurability. To see that (ii) implies (iii), notice that since E ⊂ U , we have
U4E = U ∪E −U ∩E = U −E. Similarly, (iv) implies (v). Claim (iii) implies (vi)
by Lemma 1.2.13(i), and similarly (v) implies (vi) by Lemma 1.2.13(ii).

Now we show that (ii) implies (iv). Suppose E is Lebesgue measurable. Then
Rd − E is Lebesgue measurable by Lemma 1.2.13(v), and so there exists open
U ⊃ Rd − E with m∗(U − (Rd − E)) ≤ ε. Since U − (Rd − E) = E − (Rd − U),
Rd − U is closed, and Rd − U ⊂ E, the result follows.

Finally, we prove (vi) implies (ii). Let ε > 0, and let Eε/4 be a Lebesgue
measurable set with m∗(Eε/44E) ≤ ε/4. Then we may find boxes B1, B2, . . . whose

union covers Eε/44E, such that
∑∞
n=1 |Bn| ≤ ε/2. For each n, let B′n be an open

box containing Bn with |B′n| ≤ |Bn| + ε/2n+1. Then Eε/44E ⊂
⋃∞
n=1B

′
n with∑∞

n=1 |B′n| ≤ ε. Now,
⋃∞
n=1B

′
n is the countable union of measurable sets, and is

thus measurable by Lemma 1.2.13(vi). It follows that E′ε := Eε/4 ∪
⋃∞
n=1B

′
n is a

measurable set containing E. Since E′ε − E ⊂
⋃∞
n=1B

′
n, we deduce that

m∗(E′ε4E) = m∗(E′ε − E) ≤ m∗
( ∞⋃
n=1

B′n

)
≤
∞∑
n=1

|B′n| ≤ ε.

We have thus constructed for every ε > 0 a measurable set E′ε containing E with
m∗(E′ε−E) ≤ ε. Let E′ :=

⋃∞
n=1E

′
1/n. This set is measurable by Lemma 1.2.13(vii).

Since m∗(E′−E) ≤ m∗(E′1/n−E) ≤ 1/n for all n ≥ 1, it follows that m∗(E′−E) = 0.

Thus E differs from a measurable set by a null set, and is thus measurable. (In more
detail, if E′ ⊂ U where U is open and m∗(U −E′) ≤ ε, then by finite subadditivity
we have m∗(U − E) ≤ m∗(U − E′) +m∗(E′ − E) ≤ ε.)

Exercise 1.2.8. Suppose E ⊂ Rd is Jordan measurable. By exercise 1.1.5(3),
there exists an elementary set A such that m∗,(J)(A4E) ≤ ε. Since E is Jordan
measurable, it follows that A4E is Jordan measurable as well. By (1.2), we find
that m∗,(J)(A4E) = m∗(A4E), and so the result follows from exercise 1.2.7(vi).
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Exercise 1.2.9. Since each In is the finite union of closed intervals, they are
closed sets. Since C is the countable intersection of closed sets In, it follows that C
is closed. Since C ⊂ [0, 1], we conclude that C is compact.

There is an injection from the set of countable sequences (ai)
∞
i=1 with each

ai ∈ {0, 2}. This set is isomorphic to the powerset of N, which is uncountable. Thus
C is uncountable.

Each In has measure (2/3)n, so m∗(C) ≤ (2/3)n for all n by monotonicity. Thus
m∗(C) = 0 and we conclude that C is a null set.

Exercise 1.2.11. (1) Let An := En −
⋃n−1
k=1 Ek. Then the sets An are disjoint,

with En =
⋃n
k=1Ak and

⋃∞
k=1Ek =

⋃∞
k=1Ak. By countable additivity, we have

m(En) = m
( n⋃
k=1

Ak

)
=

n∑
k=1

m(Ak)

and

m
( ∞⋃
k=1

Ek

)
= m

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

m(Ak).

Since limn→∞
∑n
k=1m(Ak) =

∑∞
k=1m(Ak), the result follows.

(2) Without loss of generality suppose m(E1) <∞. Then, applying (1) to the
sequence E1−E2 ⊂ E1−E3 ⊂ . . . , we get limn→∞m(E1−En) = m(

⋃∞
n=1(E1−En)).

It follows that

lim
n→∞

m(En) = m(E1)− lim
n→∞

m(E1−En) = m(E1)−m
( ∞⋃
n=1

(E1−En)
)

= m
( ∞⋂
n=1

En

)
.

(3) Consider the sets [0,∞) ⊂ [1,∞) ⊂ [2,∞) ⊂ . . . ; each set has infinite measure
and yet their intersection is empty.

Exercise 1.2.12. Suppose m′ is a map from the space of Lebesgue measurable
sets to elements of [0,+∞] that obeys countable additivity and satisfies m′(∅) = 0.
Then, if A ⊂ B are measurable sets, the set B−A is measurable with B = A](B−A),
and so countable additivity together with m′(∅) = 0 implies m′(A) ≤ m′(B), since
m′(B −A) ≥ 0 by hypothesis.

Given a sequence of measurable sets A1, A2, . . . , we may define a corresponding
sequence of disjoint sets by A′n := An −

⋃n−1
i=1 Ai ⊂ An. Then,

⋃∞
i=1Ai =

⋃∞
i=1A

′
i,

and so we have

m′
( ∞⋃
i=1

Ai

)
= m′

( ∞⋃
i=1

A′i

)
=

∞∑
i=1

m′(A′i) ≤
∞∑
i=1

m′(Ai)

by countable additivity and monotonicity.
Exercise 1.2.13. (i) Since 1E(x) = lim infn→∞ 1En

(x), we see that x ∈ E if and
only if there exists n such that x ∈ Ek whenever k ≥ n. Thus E =

⋃∞
n=1

⋂∞
k=nEk.

Similarly, since 1E(x) = lim supn→∞ 1En
(x), we have E =

⋂∞
n=1

⋃∞
k=nEk. Since

countable unions and countable intersections of measurable sets are measurable by
Lemma 1.2.13, it follows that E is Lebesgue measurable.

(ii) Since
⋂∞
k=1Ek ⊂

⋂∞
k=2Ek ⊂ . . . , upward monotone convergence implies

m(E) = limn→∞m(
⋂∞
k=nEk). By monotonicity, we get m(E) ≤ limn→∞m(En).

Similarly, since
⋃∞
k=1Ek ⊃

⋃∞
k=2Ek ⊃ . . . , and since m(

⋃∞
k=1Ek) ≤ m(F ) <∞, we

may apply downward monotone convergence to obtainm(E) = limn→∞m(
⋃∞
k=nEk),

and so monotonicity implies m(E) ≥ limn→∞m(En). We conclude that m(E) =
limn→∞m(En).

(iii) The functions 1[n,n+1] ‘escape to infinity,’ converging to the zero function,
although each function is non-zero on a set of measure one, namely [n, n+ 1].

Exercise 1.2.14. Given ε > 0, let (Bεn)∞n=1 be a sequence of boxes with⋃∞
n=1B

ε
n ⊃ E and

∑∞
n=1 |Bεn| ≤ m∗(E) + ε. Then A :=

⋂∞
k=1

⋃∞
n=1B

1/k
n is a
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Lebesgue measurable set containing E. By monotonicity, m(A) ≤ m∗(E) + 1/k for
any k ≥ 1, and so we conclude that m(A) = m∗(E).

Exercise 1.2.15. By monotonicity, we have m(E) ≥ supK⊂E,K cpt.m(K).
Therefore we must prove that m(E) ≤ supK⊂E,K cpt.m(K). Since E is measurable,
we may spend an epsilon to approximate E by a closed subset F , so that m(F ) ≥
m(E) − ε. Denoting by Bn the closed ball of radius n about the origin, we may
then take intersections F ∩ B1 ⊂ F ∩ B2 ⊂ . . . to obtain a monotone increasing
sequence of compact sets, and so upward monotone convergence implies m(F ) =
limn→∞m(F ∩Bn). Thus for some N we have m(F ∩BN ) ≥ m(F )− ε, and so

m(E)− 2ε ≤ m(F )− ε ≤ m(F ∩BN ) ≤ sup
K⊂E,K cpt.

m(K).

Since ε was arbitrary, the result follows.
Exercise 1.2.16. Claim (i) implies (ii), since if E is Lebesgue measurable, then

m(E) = m∗(E) <∞, and one may contain E in an open set U with m∗(U −E) ≤ ε,
so that m(U) ≤ m(E) + ε <∞ as well.

We show that (ii) implies (iii). Let E ⊂ U be open with m∗(U − E) ≤ ε/2. Now
m∗(E4U) ≤ ε/2, but U need not be bounded. Form an increasing sequence of
bounded sets U∩B◦1 ⊂ U∩B◦2 ⊂ . . . , and apply upward monotone convergence to get
limn→∞m(U ∩B◦n) = m(U). Thus for some N we have m(U ∩B◦N ) ≥ m(U)− ε/2,
or m(U −B◦N ) ≤ ε/2. Since

E4(U ∩B◦N ) = (E −B◦N ) ∪ (U ∩B◦N − E) ⊂ (U −B◦N ) ∪ (U − E),

we obtain m∗(E4(U ∩B◦N )) ≤ ε by subadditivity as desired.
Claim (i) implies (iv) by inner regularity. Claim (iv) implies (v) trivially. Claim

(iii) implies (vi) as open sets are measurable. Claim (v) implies (vi), since compact
sets are bounded and measurable. Claim (vi) implies (vii) as bounded measurable
sets have finite measure by monotonicity.

We show (vii) implies (viii). We first note that given sets A,B,C, we have
m∗(A4C) ≤ m∗(A4B) +m∗(B4C). This follows from the fact that

A4C = (A4B)4(B4C) ⊂ (A4B) ∪ (B4C).

(Here it is useful to think of the symmetric difference as addition modulo 2.) Now
suppose that E differs from a measurable set A by a set of outer measure at most ε,
so that m∗(A4E) ≤ ε. Now, by definition of measurability, m(A) = m∗(A), and
so there exists a sequence of boxes B1, B2, . . . with

∑∞
n=1 |Bn| ≤ m(A) + ε < ∞.

Since this series converges to a finite value, there exists N with m∗(
⋃∞
n=N+1Bn) =∑∞

n=N+1Bn < ε, and so we may take
⋃N
n=1Bn to be our elementary set. It follows

that

m∗
(
E4

N⋃
n=1

Bn

)
≤ m∗

(
A4

N⋃
n=1

Bn

)
+m∗(A4E)

≤ m∗
(
A4

∞⋃
n=1

Bn

)
+m∗

( ∞⋃
n=N+1

Bn

)
+m∗(A4E)

≤ 3ε.

That claim (viii) implies (ix) follows from our solution to exercise 1.1.14, where
we proved that dyadic cubes of fixed sidelength 2−n approximate elementary sets
arbitrarily well.

Finally, (ix) implies (i), since the finite union of closed dyadic cubes is measurable
with finite measure m(F ). Thus E is almost a measurable set, and so it is measurable
by exercise 1.2.7(vi) with measure at most m(F ) + ε <∞.
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Exercise 1.2.17. We first prove (i) implies (ii). Suppose E is measurable and A
is elementary (and thus measurable). Then A ∩ E and A− E are measurable and
disjoint, with m(A) = m(A ∩ E) +m(A− E) as needed.

Claim (ii) implies (iii) trivially, since boxes are elementary sets.
Finally, we prove (iii) implies (i). Since E ⊂ Rd may have infinite outer measure,

we prove the result for A ∩E, where A is a box. Since Rd is the countable union of
disjoint boxes, and since countable unions of measurable sets are measurable, this will
suffice to prove the claim. By hypothesis, we have |A| = m∗(A ∩ E) +m∗(A− E).
Cover A ∩ E with boxes B1, B2, . . . , with A ∩ E ⊂

⋃∞
n=1Bn and

∑∞
n=1 |Bn| ≤

m∗(A∩E) + ε. (We may replace Bi with A∩Bi, so we may assume Bi ⊂ A.) Then

m∗(A ∩ E) +m∗
( ∞⋃
n=1

Bn −A ∩ E
)
≤
∞∑
n=1

m∗(Bn ∩ E) +

∞∑
n=1

m∗(Bn − E)

=

∞∑
n=1

|Bn|

≤ m∗(A ∩ E) + ε.

Thus m∗(
⋃∞
n=1Bn − A ∩ E) ≤ ε, and so A ∩ E differs from a measurable set by

measure at most ε. We conclude that A ∩ E is Lebesgue measurable.
Exercise 1.2.18. (i) It suffices to prove that, if E ⊂ A ⊂ B with A,B elementary,

then m(A)−m∗(A−E) = m(B)−m∗(B−E), or m∗(B−E) = m∗(A−E)+m(B−A).
The general result then follows, since the intersection of elementary sets containing
E is once again an elementary set containing E. We prove something slightly more
general:

Lemma. Let E ⊂ Rd be bounded, and suppose A and B are elementary sets with
A ∩ E 6= ∅ and A ∪ E ⊂ B. Then m∗(B − E) = m∗(A− E) +m(B −A).

Proof. By subadditivity, we have m∗(B − E) ≤ m∗(A− E) +m(B −A). To show
m∗(B − E) ≥ m∗(A − E) + m(B − A), we let B1, B2, . . . be a sequence of boxes
with

⋃∞
n=1Bn ⊃ B−E and

∑∞
n=1 |Bn| ≤ m∗(B−E) + ε. Then,

⋃∞
n=1Bn− (B−A)

is the countable union of sets, each set being a box with an elementary set removed,
which is itself an elementary set and thus the finite union of boxes. It follows
that

⋃∞
n=1Bn − (B − A) is itself the countable union of boxes B′1, B

′
2, . . . . Since∑∞

n=1 |B′n| =
∑∞
n=1 |Bn| −m(B −A) and A− E ⊂

⋃∞
n=1B

′
n, it follows that

m∗(B − E)−m(B −A) ≤
∞∑
n=1

|B′n| ≤ m∗(B − E)−m(B −A) + ε.

Since ε was arbitrary, we conclude that m∗(B − E) ≥ m∗(A− E) +m(B −A). �

(ii) To show m∗(E) ≤ m∗(E), we must show m(A) − m∗(A − E) ≤ m∗(E)
for any elementary A ⊃ E. But this is just subadditivity. We now show that
m∗(E) = m∗(E) iff E is Lebesgue measurable. Suppose m∗(E) = m∗(E). We will
use the Carathéodory criterion to prove that E is measurable — in particular, we
will show that m(A) = m∗(A∩E) +m∗(A−E) for all elementary sets A. We know

m(A) = m∗(E) +m∗(A− E)

for all elementary sets A ⊃ E. If A ∩ E = ∅, the criterion is satisfied trivially.
Finally, if A ∩ E 6= ∅, the criterion is an easy consequence of the lemma above —
indeed, since m(B) = m∗(E) +m∗(B − E) by hypothesis, it follows that

m(A)−m∗(A− E) = m∗(E)

as needed. Thus E is Lebesgue measurable.
The converse follows from the finite additivity of Lebesgue measure.
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Exercise 1.2.19. That (ii) implies (i) and (iii) implies (i) are easy consequences
of Lemma 1.2.13. Showing that (i) implies (ii) amounts to constructing a sequence
of open sets Un ⊃ E with m∗(Un − E) ≤ 1/n and taking their intersection; (i)
implies (iii) follows dually by inner approximations by closed sets Fn ⊂ E with
m∗(E − Fn) ≤ 1/n and taking their union.

Exercise 1.2.25. Since continuously differentiable curves are Lipschitz, there
exists K with ‖f(x) − f(y)‖ ≤ K|x − y| for all x, y ∈ [a, b]. Partition [a, b] into
subintervals of length at most ε. Then the image of such a subinterval is contained
in a cube of sidelength 2Kε, and so we may cover the curve with an elementary set
of measure bounded by

b− a
ε

(2Kε)d.

This can be made arbirarily small for d ≥ 2, and so we conclude that such curves
have measure zero.

Exercise 1.2.26. Since sets with zero outer measure are Lebesgue measurable,
the Vitali set E must have positive outer measure. Pick N with Nm(E) > 1. Then,
taking N − 1 disjoint cyclic translates of E by rationals in [0, 1], we see that the
outer measure of their union is at most one by monotonicity, whereas the sum of
their outer measures is greater than one by construction.

Exercise 1.2.27. The Vitali set E is nonmeasurable, but E × {0} ⊂ R2 is a
null set and is thus measurable. So projections of measurable sets need not be
measurable.
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3. The Lebesgue Integral

Exercise 1.3.1. (i) Choose representations of f and g that are compatible, in the
sense that we may write f =

∑
1≤i≤k ci1Ei

and g =
∑

1≤i≤k c
′
i1Ei

for measurable
sets E1, . . . , Ek. This is possible since if we are given any representations of f and g,
where f involves k measurable sets and g involves k′ measurable sets, then the k+k′

measureable sets involved partition Rd into 2k+k′ disjoint sets, each of which is an
intersection of the original sets or their complement, which we may take as our Ei.
(One may think of each set as described by a binary string of k+k′ digits — the i-th
bit is set to 1 iff it is involved in the intersection.) Then f + g =

∑
1≤i≤k(ci + c′i)1Ei ,

and so

Simp

∫
Rd

f(x) + g(x) dx =
∑

1≤i≤k

(ci + c′i)m(Ei)

=
∑

1≤i≤k

cim(Ei) +
∑

1≤i≤k

c′im(Ei)

= Simp

∫
Rd

f(x) dx+ Simp

∫
Rd

g(x) dx.

Showing scalar multiplication follows from the observation that

c
∑

1≤i≤k

ci1Ei
=
∑

1≤i≤k

cci1Ei
.

(ii) Suppose Simp
∫
Rd f(x) dx < ∞, and write f =

∑
1≤i≤k ci1Ei

. Then by

definition we have
∑

1≤i≤k cim(Ei) < ∞, and so each term cim(Ei) is finite. In

particular, we may only have ci =∞ if m(Ei) = 0, and so f can only take infinite
values on a null set. Thus f is finite almost everywhere. Similarly, we may only
have m(Ei) =∞ if ci = 0, and so the support of f has finite measure. The converse
follows from the same ideas.

(iii) Write f =
∑

1≤i≤k ci1Ei . If Simp
∫
Rd f(x) dx = 0, then each term cim(Ei) is

zero, which tells us that the sets Ei on which f is nonzero necessarily have measure
zero; that is, f is zero almost everywhere. The converse is similar.

(iv) This follows from (i) and (iii), since f − g is zero almost everywhere.
(v) It suffices to prove that the simple integral is nonnegative whenever f ≥ 0.

. . .
(vi) This is clear from the definition of the simple integral.
Finally, we prove that the simple integral is the unique map from the space

of unsigned simple functions to [0,+∞] obeying the above properties. Indeed,
suppose f 7→ S

∫
Rd f(x) dx is an operator Simp+(Rd)→ [0,+∞] obeying the above

properties. Then, writing f =
∑

1≤i≤k ci1Ei
, we find that

S

∫
Rd

f(x) dx =
∑

1≤i≤k

ci · S
∫
Rd

1Ei(x) dx =
∑

1≤i≤k

cim(Ei) = Simp

∫
Rd

f(x) dx.

Exercise 1.3.2. (i) This part is just a lot of computations. We first prove
additivity for real-valued (absolutely integrable) simple functions. Indeed, since

f + g = (f + g)+ − (f + g)− = (f+ − f−) + (g+ − g−),

we have

(f + g)+ + f− + g− = (f + g)− + f+ + g+,
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and so

Simp

∫
Rd

(f + g)+(x) dx+ Simp

∫
Rd

f−(x) dx+ Simp

∫
Rd

g−(x) dx

= Simp

∫
Rd

(f + g)−(x) dx+ Simp

∫
Rd

f+(x) dx+ Simp

∫
Rd

g+(x) dx.

Rearranging, we obtain

Simp

∫
Rd

(f + g)+(x) dx− Simp

∫
Rd

(f + g)−(x) dx

=
(

Simp

∫
Rd

f+(x) dx− Simp

∫
Rd

f−(x) dx
)

+
(

Simp

∫
Rd

g+(x) dx− Simp

∫
Rd

g−(x) dx
)
,

and so

Simp

∫
Rd

f(x) + g(x) dx = Simp

∫
Rd

f(x) dx+ Simp

∫
Rd

g(x) dx

as needed.
Now we may prove additivity for complex-valued functions. We compute

Simp

∫
Rd

f(x) + g(x) dx

= Simp

∫
Rd

Re(f(x) + g(x)) + i Im(f(x) + g(x)) dx

:= Simp

∫
Rd

Re(f(x) + g(x)) dx+ iSimp

∫
Rd

Im(f(x) + g(x)) dx

=
(

Simp

∫
Rd

Re f(x) dx+ iSimp

∫
Rd

Im f(x) dx
)

+
(

Simp

∫
Rd

Re g(x) dx+ iSimp

∫
Rd

Im g(x) dx
)

= Simp

∫
Rd

f(x) dx+ Simp

∫
Rd

g(x) dx.

To prove the scalar multiplication property for real-valued functions and real
constants c, it suffices to prove it for the three cases c = −1, c = 0 and c > 0.
For c = −1, the result follows from the fact that (−f)+ = f−, (−f)− = f+, and
−f = f− − f+. The case c = 0 follows from the fact that the simple integral is zero
iff the function is zero almost everywhere. Finally, if c > 0, we may use the scalar
multiplicativity of the unsigned simple integral (as established in exercise 1.3.1(i))
to compute

Simp

∫
Rd

cf(x) dx = Simp

∫
Rd

cf+(x) dx− Simp

∫
Rd

cf−(x) dx

= c
(

Simp

∫
Rd

f+(x) dx− Simp

∫
Rd

f−(x) dx
)

= cSimp

∫
Rd

f(x) dx.

We may now prove scalar multiplicativity for c = a+ bi ∈ C and f : Rd → C. Since

cf(x) = (a+bi)(Re f(x)+i Im f(x)) = (aRe f(x)−b Im f(x))+i(bRe f(x)+a Im f(x)),
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we have

Simp

∫
Rd

cf(x) dx

= Simp

∫
Rd

aRe f(x)− b Im f(x) dx+ iSimp

∫
Rd

bRe f(x) + a Im f(x) dx

= aSimp

∫
Rd

Re f(x) dx− bSimp

∫
Rd

Im f(x) dx

+ biSimp

∫
Rd

Re f(x) dx+ aiSimp

∫
Rd

Im f(x) dx

= cSimp

∫
Rd

Re f(x) dx+ ciSimp

∫
Rd

Im f(x) dx

= cSimp

∫
Rd

f(x) dx

as needed.
Finally, we prove the ∗-linearity of our integral. We have

Simp

∫
Rd

f(x) dx = Simp

∫
Rd

Re f(x)− i Im f(x) dx

= Simp

∫
Rd

Re f(x) dx− iSimp

∫
Rd

Im f(x) dx

= Simp

∫
Rd

f(x) dx.

(ii) If real-valued functions f and g are equal almost everywhere (a.e.), then f+

and g+ are equal a.e. and so are f− and g−. Similarly, if complex-valued functions
f and g are equal a.e., then their real and imaginary parts are equal a.e. as well.
Thus the result follows from the corresponding result concerning unsigned simple
integrals.

(iii) This is immediate from the corresponding result for unsigned simple integrals.
To establish uniqueness, suppose f 7→ S

∫
Rd f(x) dx is an operator satisfying the

above axioms. If f is simple unsigned, then S
∫
Rd ≡ Simp

∫
Rd by exercise 1.3.1. If

f is real-valued, then by (i) we have

S

∫
Rd

f(x) dx = S

∫
Rd

f+(x)− f−(x) dx

= S

∫
Rd

f+(x) dx− S

∫
Rd

f−(x) dx

= Simp

∫
Rd

f+(x) dx− Simp

∫
Rd

f−(x) dx

= Simp

∫
Rd

f(x) dx.

Finally, if f is complex-valued, then

S

∫
Rd

f(x) dx = S

∫
Rd

Re f(x) dx+ iS

∫
Rd

Im f(x) dx

by (i), which is in turn equal to

Simp

∫
Rd

Re f(x) dx+ iSimp

∫
Rd

Im f(x) dx = Simp

∫
Rd

f(x) dx

by our above result for real-valued functions.
Exercise 1.3.3. (i) The preimage of an open set is open, and open sets are

measurable, so continuous functions are measurable by Lemma 1.3.9(x).
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(ii) Every unsigned simple function f is the limit of the constant sequence (f)i∈N,
and is thus measurable by Lemma 1.3.9(ii).

(iii) Suppose {fn : n ∈ N} is a countable set of unsigned measurable functions.
Then {

x ∈ Rd : sup
n∈N

fn(x) > λ
}

=
⋃
n∈N

{x ∈ Rd : fn(x) > λ}

is the countable union of measurable sets and is thus measurable. The proof for
infimums is similar, and the proof for limit superiors and limit inferiors follows from
the fact that we may express them as supremums of infimums and vice versa.

(iv) Suppose f is an unsigned function that is equal a.e. to an unsigned measurable
function g. Then, since g is the pointwise limit of a sequence of unsigned simple
functions gn, it follows that f is the pointwise limit a.e. of the sequence gn, and so
f is measurable by Lemma 1.3.9(iii).

(v) We have limn→∞ fn = lim supn→∞ fn, which is measurable by (iii).
(vi) The preimage of an open set under φ ◦ f is the preimage of an open set

under f (since φ is continuous), which is measurable.
(vii) If (fn) and (gn) are sequences of simple functions that pointwise approach

f and g, then (fn + gn) and (fngn) are sequences of simple functions that pointwise
approach f + g and fg.

Exercise 1.3.4. Suppose f : Rd → [0,+∞] is bounded unsigned measurable.
Then, if A ≤ f ≤ B for constants A and B, we may define fn(x) to be the
largest integer multiple of 2−n that is at most equal to f(x), along the lines of the
construction given in the proof of Lemma 1.3.9. Each function fn takes on finitely
many values (at most 2n(B −A)), and the convergence is uniform as fn always lies
in the tube of radius 2−n of f .

Exercise 1.3.5. Suppose f : Rd → [0,+∞] is unsigned measurable and takes
on at most finitely many values. Call these values c1, . . . , cn. Then each set
Ei := f−1({ci}) is measurable by hypothesis, and we have f =

∑
1≤i≤n ci1Ei .

Exercise 1.3.6. Since f is measurable, there exists an increasing sequence of
unsigned simple functions fn converging to f . They induce measurable sets

{(x, t) ∈ Rd ×R : 0 ≤ t ≤ fn(x)}

which form a monotone increasing sequence — their (countable) union is the set

{(x, t) ∈ Rd ×R : 0 ≤ t ≤ f(x)}

which is thus measurable.
Exercise 1.3.7. (i) and (ii) are equivalent by definition. (iv) and (v) are

equivalent as may be seen by taking complements.
To see that (ii) implies (iii), note that since fn → f , we have Re fn → Re f , which

implies (Re fn)+ → (Re f)+, which in turn implies that |(Re fn)+| → |(Re f)+|.
Since |(Re fn)+| is unsigned simple, we conclude that |(Re f)+| is measurable, and
the other results follow similarly.

(iii) implies (ii) as we may use the measurability of the functions |Re(f)+| and
|Re(f)−| to construct sequences of unsigned simple functions converging to them,
which may be combined to form a sequence of signed simple functions converging to
Re(f). The same may be done with Im(f), and the two may then be combined to
give a sequence of simple functions converging to f . We now know that (i)–(iii) are
equivalent.

On the equivalence of (i)–(iii) and (iv)–(v): at the moment I do not know the
solution. An idea though: we know that

f−1(U) = {x ∈ Rd : f(x) ∈ U},
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and f(x) ∈ U implies Re(f(x)) ∈ Re(U) and Im(f(x)) ∈ Im(U), with Re(U), Im(U)
open. So {x ∈ Rd : Re(f(x)) ∈ Re(U)} . . .

Exercise 1.3.9. Riemann integrable functions are continuous a.e., and thus
measurable a.e..

Exercise 1.3.10. (i) If f is simple, then∫
Rd

f(x) dx = sup
0≤g≤f ; g simple

Simp

∫
Rd

g(x) dx = Simp

∫
Rd

f(x) dx

by monotonicity of the simple integral; similarly for the upper integral.
(ii) We wish to show

sup
0≤h≤f ;h simple

Simp

∫
Rd

h(x) dx ≤ sup
0≤h≤g;h simple

Simp

∫
Rd

h(x) dx.

Any simple function h ≤ f is bounded above by g almost everywhere; we may
modify h on a null set so that it still has the same simple integral and the result
follows.

(iii) The case for c = 0 is simple. If c ∈ (0,+∞), then the result follows
from the fact that, if g ≤ f is a simple function, then cg ≤ cf is simple with
Simp

∫
Rd cg(x) dx = cSimp

∫
Rd g(x) dx by earlier results.

(iv) If f = g a.e., let S be the null set of points where they disagree. Then, given
a simple function h ≤ f , we may define a new simple function h′ which is equal to
h outside S and is zero on S. This proves that∫

Rd

f(x) dx ≤
∫
Rd

g(x) dx,

and equality follows by symmetry.
(v) If h ≤ f and h′ ≤ g are simple, then h+ h′ ≤ f + g is simple, with

Simp

∫
Rd

f(x) + g(x) dx = Simp

∫
Rd

f(x) dx+ Simp

∫
Rd

g(x) dx.

(vi) Similar to proof of (v).
(vii) Since f(x) = f(x)1E(x)+f(x)1Rd−E(x), superadditivity settles one direction

for us. To show∫
Rd

f(x) dx ≤
∫
Rd

f(x)1E(x) dx+

∫
Rd

f(x)1Rd−E(x) dx,

let h ≤ f be simple. Then we may write h as the sum of simple functions h =
h1E + h1Rd−E . They are simple because 1A1B = 1A∩B. Since h1E ≤ f1E and
similarly for h1Rd−E , the result follows.

(viii) By monotonicity,
∫
Rd min(f(x), n) dx is an increasing sequence bounded

above by
∫
Rdf(x) dx. Thus we must prove

(∗) sup
n∈N

∫
Rd

min(f(x), n) dx =

∫
Rd

f(x) dx.

Let us first settle the case where m(f−1(∞)) > 0. In this case, we construct simple
functions fn which are equal to n on the set f−1(∞). Such functions satisfy

Simp

∫
Rd

fn(x) dx ≥ n ·m(f−1(∞))→∞

as n→∞, and so both sides of (∗) are infinite. Now suppose m(f−1(∞)) = 0, so
that f is finite a.e.. Let g ≤ f be simple with

Simp

∫
Rd

g(x) dx ≥
∫
Rd

f(x) dx− ε.
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Then, g(x) is finite a.e., and we may modify it on a null set so that it is finite
everywhere without affecting the value of its simple integral. Since g(x) is simple, it
attains finitely many values, and thus it is bounded by some natural number n. It
follows that g(x) ≤ min(f(x), n), so∫

Rd

min(f(x), n) dx ≥
∫
Rd

f(x) dx− ε,

and we are done.
(ix) Let h ≤ f be simple (as discussed earlier, we may take the inequality to hold

almost everywhere) with

Simp

∫
Rd

h(x) dx ≥
∫
Rd

f(x) dx− ε.

If we write h =
∑
k ck1Ek

, then h(x)1|x|≤n(x) =
∑
k ck1Ek∩{|x|≤n}(x) is simple for

all n, and we have

Simp

∫
Rd

h(x)1|x|≤n(x) dx =
∑
k

ckm(Ek ∩ {|x| ≤ n}).

By upward monotone convergence, we have m(Ek) = limn→∞m(Ek ∩ {|x| ≤ n}).
It follows that

lim
n→∞

Simp

∫
Rd

h(x)1|x|≤n(x) dx ≤ Simp

∫
Rd

h(x) dx,

and so we may pick N such that

Simp

∫
Rd

h(x)1|x|≤N (x) dx ≥ Simp

∫
Rd

h(x) dx− ε.

Thus ∫
Rd

f(x)1|x|≤N dx ≥
∫
Rd

f(x) dx− 2ε,

and the result follows since ε was arbitrary.
(x) Since f + g is simple, we may write f + g =

∑
k ck1Ek

. Let
∑
k gk1E′′k ≥ g be

simple with ∫
Rd

g(x) dx ≥
∑
k

gkm(E′′k )− ε.

Since ∑
k

ck1Ek
− f = g ≤

∑
k

gk1E′′k ,

we have ∑
k

ck1Ek
−
∑
k

gk1E′′k ≤ f.

Thus ∑
k

ckm(Ek)−
∑
k

gkm(E′′k ) ≤
∫
Rd

f(x) dx.

We may then compute

Simp

∫
Rd

f(x) + g(x) dx =
∑
k

ckm(Ek) ≤
∫
Rd

f(x) dx+
∑
k

gkm(E′′k )

≤
∫
Rd

f(x) dx+

∫
Rd

g(x) dx+ ε.

Since ε was arbitrary, we conclude that

Simp

∫
Rd

f(x) + g(x) dx ≤
∫
Rd

f(x) dx+

∫
Rd

g(x) dx,
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and the reverse inequality follows from the analogous argument with
∑
k ck1Ek

−g =
f ≥

∑
k fk1E′k instead.

Exercise 1.3.11. Suppose f : Rd → [0,+∞] is measurable, bounded and sup-
ported on a set S of finite measure. Then f is the uniform limit of a sequence of
bounded simple functions (fn)∞n=1, which we may also assume vanish outside S. Let
ε > 0, and pick N with |fn(x)− f(x)| < ε/m(S) whenever x ∈ S and n ≥ N . Then
we may define simple functions gn(x) := fn(x)−ε/m(S) and hn(x) = fn(x)+ε/m(S)
for x ∈ S, and zero outside S. By our choice of N , we see that

gn(x) ≤ f(x) ≤ hn(x).

Then,

Simp

∫
Rd

gn(x) dx = Simp

∫
Rd

fn(x) dx− ε

and

Simp

∫
Rd

hn(x) dx = Simp

∫
Rd

fn(x) dx+ ε.

It follows that ∫
Rd

f(x) dx ≥ Simp

∫
Rd

fn(x) dx− ε

and ∫
Rd

f(x) dx ≤ Simp

∫
Rd

fn(x) dx+ ε

whenever n ≥ N . Thus the lower and upper Lebesgue integrals of f(x) get arbitrarily
close, and we conclude that they must be equal.

Exercise 1.3.12. Recall that Lebesgue outer measure satisfies outer regularity,
in the sense that

m∗(E) = inf
U⊃E; U open

m∗(U)

for any E ⊂ Rd. Let U ⊃ E be open with m∗(U) ≤ m∗(E) + ε. Then, since 1U is a
simple and thus measurable function, we use monotonicity to conclude that∫

Rd

1E(x) dx ≤ Simp

∫
Rd

1U (x) dx = m∗(U) ≤ m∗(E) + ε.

Sending ε→ 0, we obtain one part of our claim. To obtain the reverse inequality,
suppose f =

∑
k ck1Ek

≥ 1E with Ek measurable disjoint and∫
Rd

1E(x) dx+ ε ≥
∑
k

ckm(Ek).

Then ck ≥ 1 whenever Ek ∩ E 6= ∅, and we have∫
Rd

1E(x) dx+ ε ≥
∑
k

ckm(Ek) ≥
∑

k:Ek∩E 6=∅
m(Ek) ≥ m

( ⋃
k:Ek∩E 6=∅

Ek

)
≥ m∗(E),

which yields the result as ε was arbitrary.
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4. Abstract measure spaces

Exercise 1.4.4. Let B be a finite Boolean algebra on a set X, and define a map
f : X → B sending x ∈ X to the intersection of B-measurable sets containing x, so
that f(x) is the smallest B-measurable set containing x. This intersection is finite
since B is finite, and so f(x) ∈ B. The image im(f) =: (Aα)α∈I is a subset of B; we
claim that it is in fact a partition of X into atoms (Aα)α∈I with B = A((Aα)α∈I).
The sets Aα cover X. If distinct sets f(x) = Aα and f(y) = Aβ had a non-empty
intersection, then Aα\Aβ or Aα∩Aβ would be a smaller B-measurable set containing
x. It follows that im(f) partitions X. Clearly A(im(f)) ⊂ B. Conversely, suppose
A ∈ B. Arguing as above, we see that imf (A) is a partition of A into atoms, and so
A ∈ A(im(f)) as needed.

Exercise 1.4.5. Suppose these algebras were atomic. Then, since they contain
every singleton, they must have these singletons as atoms, and so they would contain
every subset of Euclidean space, which would be absurd.

Exercise 1.4.8. Let n be a natural number, and suppose F = {X1, . . . , Xn}
is a finite collection of n sets. Then F partitions X :=

⋃n
i=1Xi into at most 2n

disjoint sets, which yields an atomic algebra with at most 22n

elements containing
〈F〉bool. Thus |〈F〉bool| ≤ 22n

.
This bound is in fact best possible. Indeed, let X = {0, 1}n, and consider the

family F = {X1, . . . , Xn} where Xi contains the 2n−1 elements of X with the
i-th coordinate equal to 0. We will show that all 2n singleton subsets of X are
contained in 〈F〉bool; this will imply that 〈F〉bool = 2X as needed. Write an element
x ∈ X as a string of n binary digits. Then, since Boolean algebras are closed
under complements and intersections, we may form the set {x} as an intersection
of n sets which are either Xi or X \ Xi — if the i-th digit of x is 0, we include
Xi in the intersection; otherwise we include X \Xi. For example, if n = 3, then
X1 = {000, 001, 010, 011}, X2 = {000, 001, 100, 101}, X3 = {000, 010, 100, 110}, and
{110} = (X \X1) ∩ (X \X2) ∩X3.

Exercise 1.4.9. We first show that the collection
⋃∞
n=0 Fn is a Boolean algebra.

Notice that F0 ⊂ F1 ⊂ . . . . By (ii),
⋃∞
n=0 Fn contains the empty set as an empty

union. Suppose A,B ∈
⋃∞
n=0 Fn. Then A ∈ Fn for some n, and so its complement

is contained in Fn+1 by (ii). Since the Fn are nested, we may find n for which
A,B ∈ Fn. It then follows from (ii) that A ∪ B is in Fn+1. Since

⋃∞
n=0 Fn is

a Boolean algebra containing F , we conclude that 〈F〉bool ⊂
⋃∞
n=0 Fn. For the

reverse inclusion, notice that F0 ⊂ 〈F〉bool trivially, and if Fn ⊂ 〈F〉bool, then
the axioms of a Boolean algebra guarantee that Fn+1 ⊂ 〈F〉bool. The inclusion⋃∞
n=0 Fn ⊂ 〈F〉bool then follows from induction.
Exercise 1.4.10. To show that atomic algebras are σ-algebras, it suffices to

verify that they are closed under countable unions. This is true, because sets that
belong to an atomic algebra are in correspondence with subsets of an index set, and
any union of such subsets remains a subset.

Exercise 1.4.11. The set Q ∩ [0, 1] ⊂ R is neither elementary nor Jordan
measurable, but it is a countable union of singletons, each of which is elementary
and Jordan measurable.

Exercise 1.4.14. (i) The Borel σ-algebra is generated by open sets by definition.
(ii) Every σ-algebra containing all open sets contains all closed sets, and vice

versa.
(iii) Every σ-algebra that contains all the closed sets of Rd contains all compact

sets. Conversely, every closed set C is the countable union of compact sets C ∩Bn.
(iv) Every σ-algebra that contains the open sets of Rd contains open balls.

Conversely, since Rd is second-countable and thus Lindelöf, every open cover by
open balls of an open set admits a countable subcover.
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(v) Every σ-algebra containing open sets contains boxes. This is clear for open
boxes, otherwise we use the trick where (0, 1) =

⋃∞
n=1[1/n, 1− 1/n]. The converse

follows from Lemma 1.2.11, which tells us that open sets are countable unions of
almost disjoint closed cubes.

(vi) Every σ-algebra containing all boxes contains the elementary sets as unions.
The converse is trivial as elementary sets are boxes.

Exercise 1.4.17. Let E ⊂ Rd1 and F ⊂ Rd2 be boxes, where we will fix E and
vary F . We use structural induction, following Remark 1.4.15. Clearly E×∅ is Borel
measurable. Clearly E × F is Borel measurable for all boxes F . Clearly if E ×A is
Borel measurable for a subset A ⊂ X, then E × (Rd2 \A) = (E ×Rd2) \ (E ×A)
is as well. Clearly if E ×An is Borel measurable for subsets A1, A2, · · · ⊂ X, then
E ×

⋃∞
n=1An =

⋃∞
n=1E ×An is as well. Repeating this process but now varying E,

we obtain the result.
Exercise 1.4.18. (i) We use structural induction, following Remark 1.4.15. This

is true for the empty set. Slices of boxes are boxes and thus are Borel measurable.
If every slice of the form {x2 ∈ Rd2 : (x1, x2) ∈ E} of some E ⊂ Rd1+d2 is Borel
measurable, then any slice of Rd1+d2 \ E is either just Rd2 or the complement of
a slice of the form given above. Finally, if sets E1, E2, · · · ⊂ Rd1+d2 have Borel
measurable slices, then slices of their countable union are countable unions of their
slices, which are Borel measurable. That is, we have{

x2 ∈ Rd2 : (x1, x2) ∈
∞⋃
n=1

En

}
=

∞⋃
n=1

{x2 ∈ Rd2 : (x1, x2) ∈ En}.

(ii) Let S ⊂ [0, 1] ⊂ R be nonmeasurable. Then S × {0} ⊂ [0, 1]× {0} ⊂ R2 is a
null set. Thus slices of Lebesgue measurable sets need not be Lebesgue measurable!

Exercise 1.4.19. Lebesgue measurable sets are Fσ sets with null sets removed
by Exercise 1.2.19. Conversely, Borel measurable sets are Lebesgue measurable, and
so are null sets. It follows that the Lebesgue σ-algebra on Rd is generated by the
open subsets of Rd together with the null sets.
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5. Modes of convergence

Exercise 1.5.3. (i) Suppose fn converges uniformly to zero. Then, given ε > 0,
there exists N with |An1En

(x)| ≤ ε whenever n ≥ N and x ∈ X. In particular,
since En is of positive measure and thus non-empty, we see that |An| ≤ ε whenever
n ≥ N , so that An → 0 as n→∞. Conversely, if An → 0, then for large n we must
have |An| ≤ ε, and so |An1En(x)| ≤ |An| ≤ ε whenever x ∈ X for large n as needed.

(ii) The argument is analogous to that of (i). In particular, even though we only
have |An1En

(x)| ≤ ε µ-almost everywhere, we must still have some x ∈ En for which
this bound holds as En is assumed to be of positive measure.

Exercise 1.5.9. Convergence in measure implies convergence in L1 norm as we
proved in exercise 1.5.2. Conversely, suppose for contradiction that fn converges
in measure to f but fn does not converge in L1 norm to f . Then, there exists a
subsequence fnj of fn and a positive constant c with

∫
X
|fnj − f | dµ ≥ c. But by

exercise 1.5.8, since fn converges in measure to f , there exists a subsequence fnji
of

fnj that converges almost uniformly to f , and thus pointwise almost everywhere.
Since the functions fn are dominated by hypothesis, we may apply the dominated
convergence theorem to |fnji

− f |, obtaining∫
X

|fnji
− f | dµ→ 0

as i→∞. That is, fnji
converges in L1 norm to f , contradicting

∫
X
|fnj
−f | dµ ≥ c.

Exercise 1.5.10. (i) Since f is absolutely integrable, we have supn ‖fn‖L1(µ) =
‖f‖ <∞. Applying dominated convergence to |fn|1|fn|≥M , we get

lim
M→∞

∫
|fn|≥M

|fn| dµ = 0.

Here the limit is taken over integer M , but this is fine since we have monotonicity,
in the sense that if M > N , then∫

|fn|≥M
|fn| dµ <

∫
|fn|≥N

|fn| dµ.

The argument for escape to width infinity is similar, this time applying dominated
convergence to the sequence |fn|1|fn|≤1/k.

(ii) This follows from (i), using monotonicity of the integral.
(iii) The sequence n1[n,n+1/n2) is uniformly integrable as can be seen by applying

the criteria for step functions to be uniformly integrable, but it is not dominated
since the harmonic series diverges.

Exercise 1.5.11. The forward implication follows from the definition of uniform
integrability. Conversely, since µ(X) <∞, we have

sup
n

∫
|fn|≤δ

|fn| dµ ≤ δµ(X)→ 0

as δ → 0. To see that the functions fn are uniformly bounded in L1 norm, choose
large M so that supn

∫
|fn|≥M |fn| dµ ≤ 1 (say), and notice that∫

X

|fn| dµ =

∫
|fn|<M

|fn| dµ+

∫
|fn|≥M

|fn| dµ < Mµ(X) + 1.

Exercise 1.5.13. Choose large M so that

sup
n

∫
|fn|≥M

|fn| dµ ≤
ε

2
.
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Then, given a measurable set E with µ(E) ≤ ε/2M =: δ, we compute∫
E

|fn| dµ =

∫
{x∈E:|fn(x)|<M}

|fn| dµ+

∫
{x∈E:|fn(x)|≥M}

|fn| dµ

≤
∫
{x∈E:|fn(x)|<M}

M dµ+

∫
|fn|≥M

|fn| dµ

≤Mµ(E) +
ε

2
≤ ε.

Exercise 1.5.14. Since X is of finite measure, by exercise 1.5.11 it suffices to
prove that supn

∫
|fn|≥M |fn| dµ→ 0 as M → +∞. Let ε > 0, and choose δ > 0 such

that
∫
E
|fn| dµ ≤ ε whenever n ≥ 1 and E is a measurable set with µ(E) ≤ δ. By

Markov’s inequality, we have

µ{x ∈ X : |fn| ≥M} ≤
1

M

∫
X

|fn| dµ ≤
1

M
sup
n
‖fn‖L1

whenever n ≥ 1. Since supn ‖fn‖L1 < ∞ by hypothesis, we may choose large M
such that 1

M supn ‖fn‖L1 ≤ δ. Then µ{x ∈ X : |fn| ≥M} ≤ δ, and so∫
|fn|≥M

|fn| dµ ≤ ε

whenever n ≥ 1 as needed.
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6. Differentiation Theorems

Exercise 1.6.5. Suppose f : R → C is absolutely integrable, and define the
indefinite integral F : R→ C by F (x) :=

∫
[−∞,x]

f(t) dt. We prove F is continuous.

Since F (x + h) − F (x) =
∫

(x,x+h]
f(t) dt, we see that it suffices by the triangle

inequality to give a bound on
∫
E
|f(t)| dt whenever E is a measurable set satisfying

m(E) ≤ δ. Since f is absolutely integrable with |f |1|f |≥M ≤ |f |, and since absolutely
integrable functions are finite almost everywhere, we may apply the dominated
convergence theorem to get

lim
M→∞

∫
|f |≥M

|f(t)| dt =

∫
R

lim
M→∞

|f(t)|1|f |≥M dt = 0,

and so we may pick large M for which
∫
|f |≥N |f(t)| dt ≤ ε/2 whenever N ≥M . On

the other hand, by Markov’s inequality, we may choose M larger if necessary such
that

m{x ∈ R : |f(x)| ≥M} ≤ 1

M

∫
R

|f(t)| dt ≤ ε/2.

It follows that∫
E

|f(t)| dt =

∫
E∩{|f |≥M}

|f(t)| dt+

∫
E\{|f |≥M}

|f(t)| dt

≤
∫
|f |≥M

|f(t)| dt+

∫
E∩{|f |<M}

|f(t)| dt

≤ ε/2 +Mm(E)

≤ ε

whenever m(E) ≤ ε/2M as needed. We conclude that F is absolutely continuous,
and thus uniformly continuous, and thus continuous.

Exercise 1.6.7. Let B be an essential upper bound for g. Then∫
Rd

|f(y)g(x− y)| ≤ B
∫
Rd

|f(y)| <∞

by the absolute integrability of f , so that the convolution f ∗ g is well-defined.
In fact, we have shown that f ∗ g is bounded. To show that the convolution is
continuous, we compute

|f ∗ g(x+ h)− f ∗ g(x)| =

∣∣∣∣∣
∫
Rd

f(y)g(x+ h− y) dy −
∫
Rd

f(y)g(x− y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd

f(y + h)g(x− y) dy −
∫
Rd

f(y)g(x− y) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd

(
f(y + h)− f(y)

)
g(x− y) dy

∣∣∣∣∣
≤ B

∫
Rd

|f(y + h)− f(y)| dy.

The result follows from L1 convergence of translations of absolutely integrable
functions.

Exercise 1.6.8. If E ⊂ Rd is an unbounded measurable set of positive measure,
we may apply upward monotone convergence to the intersections E ∩Bn to find a
bounded subset of positive measure. If the difference set E ∩Bn −E ∩Bn contains
an open neighborhood of the origin, then so does the original set E. Thus it suffices
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to prove the result for bounded sets E. On such a set, the indicator function 1E is
absolutely integrable, and clearly 1−E is bounded. Since

1E ∗ 1−E(x) =

∫
Rd

1E(y)1−E(x− y) dy =

∫
E

1−E(x− y) dy,

we have

1E ∗ 1−E(0) =

∫
E

1−E(−y) dy = m(E) > 0.

Since convolution is continuous, there exists an open neighborhood U of the origin
on which 1E ∗ 1−E > 0. We claim that U ⊂ E − E. Indeed, given x ∈ U , we have

1E ∗ 1−E(x) =

∫
E

1−E(x− y) dy > 0,

which implies that x − y ∈ −E for some y ∈ E. That is, y − x ∈ E, and so
x = y − (y − x) ∈ E − E as needed.

Exercise 1.6.9. (i) Let f : Rd → C be a measurable homomorphism, so that
f(x+ y) = f(x) + f(y) for all x, y ∈ Rd. Notice that f(0) = f(0) + f(0), so that
f(0) = 0. Since limh→0 f(x+ h) = limh→0(f(x) + f(h)) = f(x) + limh→0 f(h), to
prove that f is continuous, it suffices to prove that f is continuous at 0. Let D be
a disk centered at the origin in C. Then, there exists a countable set of complex
numbers {z1, z2, . . . } with

⋃∞
n=1(zn+D) = C, as every disk conains a rational point.

Thus
∞⋃
n=1

f−1(zn +D) = f−1
( ∞⋃
n=1

(zn +D)
)

= f−1(C) = Rd,

so that
∑∞
n=1m(f−1(zn + D)) ≥ m(Rd) = ∞. It follows that there exists z ∈ C

such that f−1(z +D) has positive measure. By the Steinhaus theorem, there exists
an open neighborhood U contained in f−1(z +D)− f−1(z +D). That is,

U ⊂ f−1(z +D)− f−1(z +D)

= {x− y : x, y ∈ f−1(z +D)}
= {x− y : f(x), f(y) ∈ z +D}
= {x− y : f(x)− z, f(y)− z ∈ D}.

Therefore f(U) ⊂ 2D, which implies that f is continuous at 0.
(ii) Given r1, . . . , rd ∈ Q, additivity implies

f(r1e1 + · · ·+ rded) = r1f(e1) + · · ·+ rdf(ed).

Since continuous functions are determined by their values on rational inputs, it
follows from (i) that f(x1e1 + · · ·+ xded) = x1f(e1) + · · ·+ xdf(ed) in general.

(iii) Let x ∈ Rd \Qd, and use Zorn’s lemma to extend the set {e1, . . . , ed, x} to a
basis B of Rd considered as a Q-vector space. Given a homomorphism f : Rd → C
and some u ∈ Rd written uniquely as u =

∑
1≤i≤n ribαi for some rational ri, we

see f(u) =
∑

1≤i≤n rif(bαi
), so that f is determined by the values it takes on B.

For rational inputs we must have f(r1e1 + · · · + rded) = r1f(e1) + · · · + rdf(ed).
Now we define f so that f(x) 6= x1f(e1) + · · ·+ xdf(ed). Let (qn) be a sequence of
rational points converging to x. By construction, limn→∞ f(qn) 6= f(x), and so f is
discontinuous, and thus nonmeasurable by earlier arguments.

Alternatively, given any basis B for Rd as a Q-vector space, we may define f
by sending all elements of B to 1, so that f(

∑
1≤i≤n ribαi

) =
∑

1≤i≤n ri. Then the

image of Rd under f consists solely of rational points, and is disconnected, so f is
discontinuous, and thus nonmeasurable.
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Remarks on page 119, following proof of rising sun lemma. Let

M[a,b] :=
{
x ∈ [a, b] : sup

h>0;[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ
}
.

To prove that

m(MR) ≤ 1

λ

∫
R

|f(t)| dt,

it suffices by upwards monotone convergence to prove that

m(M[a,b]) ≤
1

λ

∫
R

|f(t)| dt

for any compact interval [a, b]. Indeed, we may form the inclusions

· · · ⊂M[−n,n] ⊂M[−n−1,n+1] ⊂ · · · ⊂MR

and one may show that

MR =

∞⋃
n=1

M[−n,n].

To prove the forward inclusion, suppose x ∈ R is such that

sup
h>0

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ.

Then, since f is absolutely integrable, we have

lim sup
h→∞

1

h

∫
[x,x+h]

|f(t)| dt ≤ lim sup
h→∞

1

h

∫
R

|f(t)| dt = 0,

and so, picking large n ≥ |x| with 1
h

∫
[x,x+h]

|f(t)| dt < λ/2 (say) whenever h ≥ n,

we see that

sup
h>0;[x,x+h]⊂[−2n,2n]

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ,

and so x ∈M[−2n,2n] as needed.
In fact, it suffices to prove that

m({x ∈ [a, b] : sup
h>0;[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt > λ}) ≤ 1

λ

∫
R

|f(t)| dt

for all λ > 0, since then we have

m
({
x ∈ [a, b] : sup

h>0;[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ
})

≤ m
({
x ∈ [a, b] : sup

h>0;[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt > λ− ε
})

≤ 1

λ− ε

∫
R

|f(t)| dt

for all 0 < ε < λ, and so taking ε→ 0 gives us

m
({
x ∈ [a, b] : sup

h>0;[x,x+h]⊂[a,b]

1

h

∫
[x,x+h]

|f(t)| dt ≥ λ
})
≤ 1

λ

∫
R

|f(t)| dt

as needed.
Exercise 1.6.11. From the one-sided Hardy–Littlewood (HL) maximal inequality

established earlier, we may obtain the corresponding inequality for the other side
by applying the original inequality to the function x 7→ f(−x). Thus

m({x ∈ R : sup
h>0

1

h

∫
[x−h,x]

|f(t)| dt ≥ λ}) ≤ 1

λ

∫
R

|f(t)| dt.
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It suffices to prove that, given x ∈ R such that supx∈I
1
|I|
∫
I
|f(t)| dt ≥ λ, we have

sup
h>0

1

h

∫
[x−h,x]

|f(t)| dt ≥ λ or sup
h′>0

1

h′

∫
[x,x+h′]

|f(t)| dt ≥ λ.

The two-sided HL maximal inequality then follows from both one-sided HL maximal
inequalities, together with monotonicity and subadditivity of measure.

We will prove the above claim by contraposition. Suppose we have

sup
h>0

1

h

∫
[x−h,x]

|f(t)| dt < λ and sup
h′>0

1

h′

∫
[x,x+h′]

|f(t)| dt < λ.

Then we may find ε > 0 such that

1

h

∫
[x−h,x]

|f(t)| dt < λ− ε and
1

h′

∫
[x,x+h′]

|f(t)| dt < λ− ε

for all h, h′ > 0. From this it follows that

1

h+ h′

∫
[x−h,x+h′]

|f(t)| dt

=
1

h+ h′

∫
[x−h,x]

|f(t)| dt+
1

h+ h′

∫
[x,x+h′]

|f(t)| dt

<
h(λ− ε)
h+ h′

+
h′(λ− ε)
h+ h′

= λ− ε
for all h, h′ > 0, and so we conclude that

sup
x∈I

1

|I|

∫
I

|f(t)| dt = sup
h,h′>0

1

h+ h′

∫
[x−h,x+h′]

|f(t)| dt ≤ λ− ε < λ.

Exercise 1.6.12. We first establish the inequality for λ = 0, which states that∫
x:f∗(x)>0

f(x) dx ≥ 0.

It suffices to prove that ∫
x∈[a,b]:f∗(x)>0

f(x) dx ≥ 0

for any compact interval [a, b], as the general case follows via dominated convergence.
We apply the rising sun lemma to the function F : [a, b] → R defined by F (x) :=∫

[a,x]
f(t) dt, and denote by

⋃
n In the open set obtained as described in the statement

of the lemma. Since F (x+h)−F (x) =
∫

[x,x+h]
f(t) dt, we see that f∗(x) > 0 if and

only if suph>0 F (x+ h)− F (x) > 0, and so we have

{x ∈ [a, b] : f∗(x) > 0} =
⋃
n

In.

Since F (bn) − F (an) ≥ 0, we get
∫
In
f(t) dt ≥ 0, and so monotone convergence

implies ∫
x∈[a,b]:f∗(x)>0

f(t) dt =
∑
n

∫
In

f(x) dx ≥ 0

as needed.
For λ 6= 0, . . .
Exercise 1.6.13. To do. . .
Exercise 1.6.14. (i) Suppose

∫
B(0,r)

|f(x)| dx <∞ for all r > 0. Then, choosing

large r so that x ∈ B(0, r), we see that f is absolutely integrable on B(0, r). It
follows that f is locally integrable. Conversely, suppose f is locally integrable, so
that for every x ∈ Rd we have an open set Ux 3 x for which

∫
Ux
|f(t)| dt <∞. Thus,
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given r > 0, the sets (Ux)
x∈B(0,r)

form an open cover of the compact set B(0, r),

and we obtain a finite subcover (Uxi)1≤i≤n. Since B(0, r) ⊂ B(0, r) ⊂
⋃

1≤i≤n Uxi ,
it follows that ∫

B(0,r)

|f(t)| dt ≤
∑

1≤i≤n

∫
Uxi

|f(t)| dt <∞

as needed.
(ii) Let f : Rd → C be a locally integrable function. The functions fN := f1B(0,N)

are absolutely integrable, and they converge to f . By Theorem 1.6.19, we have

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|fN (y)− fN (x)| dy = 0

for almost every x ∈ B(0, N). Since B(0, N) is open, we have B(x, r) ⊂ B(0, N) for
sufficiently small r, and so we have

lim
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0

for almost every x ∈ B(0, N). Since the countable union of null sets is null, we see
that this identity holds for almost every x ∈ Rd.

Exercise 1.6.15. Since x is a Lebesgue point of f , we may choose small r > 0
so that ∣∣∣∣∣ 1

m(B(x, h))

∫
B(x,h)

|f(y)− f(x)| dy

∣∣∣∣∣ ≤ cε
whenever 0 < h < r. Since x+ Eh ⊂ B(x, h), it follows that∣∣∣∣∣ 1

m(Eh)

∫
x+Eh

f(y) dy − f(x)

∣∣∣∣∣ =

∣∣∣∣∣ 1

m(Eh)

∫
x+Eh

f(y)− f(x) dx

∣∣∣∣∣
≤ 1

m(Eh)

∫
x+Eh

|f(y)− f(x)| dx

≤ 1

cm(B(x, h))

∫
B(x,h)

|f(y)− f(x)| dx

≤ ε

whenever 0 < h < r. Specializing to R, we let Eh := [0, h) ⊂ B(0, h), so that
m(Eh) ≥ 1

2m(B(0, h)) for all h > 0. We conclude that

lim
h→0

1

h

∫
[x,x+h]

f(y) dy = f(x),

so the Lebesgue differentiation theorem in general dimension indeed implies its
one-dimensional counterpart.

Exercise 1.6.16. Suppose f : Rd → C is continuous. Choose R > 0 such that
|f(y)− f(x)| ≤ ε whenever y ∈ B(x,R). Then,

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy ≤ 1

m(B(x, r))

∫
B(x,r)

ε dy = ε

whenever 0 < r < R as needed.
Exercise 1.6.17. Let f : Rd → C be absolutely integrable, and let ε, δ > 0 be

arbitrary. Then, by Littlewood’s second principle, we can find a function g : Rd → C
which is continuous and compactly supported, with∫

Rd

|f(x)− g(x)| dx ≤ ε/Cd,
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where Cd > 0 is the constant that shows up in the Hardy–Littlewood maximal
inequality. Applying the Hardy–Littlewood maximal inequality, we conclude that

m({x ∈ Rd : sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)− g(y)| dy ≥ λ}) ≤ ε

λ
.

Similarly, we may apply Markov’s inequality to get

m({x ∈ Rd : |f(x)− g(x)| ≥ λ}) ≤ ε

λ
.

By subadditivity, we conclude that for all x ∈ Rd outside of a set E of measure at
most 2ε/λ, one has both

(6)
1

m(B(x, r))

∫
B(x,r)

|f(y)− g(y)| dy < λ

and

(7) |f(x)− g(x)| < λ

for all r > 0.
Now let x ∈ R \E. From the dense subclass result (exercise 1.6.16) applied to

the continuous function g, we have

1

m(B(x, r))

∫
B(x,r)

|g(y)− g(x)| dy < λ

whenever r is sufficiently close to zero. Combining this with (6), (7), and the triangle
inequality, we conclude that

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy < 3λ

for all r sufficiently close to zero. In particular, we have

lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy < 3λ

for all x outside a set of measure 2ε/λ. Keeping λ fixed and sending ε to zero, we
conclude that

lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy < 3λ

for almost every x ∈ R. If we then let λ go to zero along a countable sequence (e.g.,
λ := 1/n for n = 1, 2, . . . ), we conclude that

lim sup
r→0

1

m(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0

for almost every x ∈ R, and the claim follows.
Exercise 1.6.19. Following the proof in the text of the Hardy–Littlewood

maximal inequality, we show that

m(K) ≤ (2 + ε)d

λ

∫
Rd

|f(t)| dt

whenever K is a compact set that is contained in{
x ∈ Rd : sup

r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy > λ
}
.

By construction, for every x ∈ K, there exists an open ball B(x, rx) such that

(8)
1

m(B(x, r))

∫
B(x,r)

|f(y)| dy > λ.
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The balls of the form B(x, εrx) for x ∈ K cover K, and thus we may extract a
finite subcover B(x1, εrx1

), . . . , B(xn, εrxn
) of K. Consider the corresponding balls

B(x1, rx1), . . . , B(xn, rxn). Using a greedy algorithm similar to the one used in the
proof of the earlier Vitali-type covering lemma, we may rename the points xi so
that, for some 1 ≤ m ≤ n, we have rx1

≥ · · · ≥ rxm
with B(x1, rx1

), . . . , B(xm, rxm
)

disjoint and m maximal. We claim the balls B(x1, (2 + ε)rx1
), . . . , B(xm, (2 + ε)rxm

)
cover K. It suffices to prove that B(xi, εrxi

) is contained in the union of these
balls for 1 ≤ i ≤ n. If i ≤ m, we have B(xi, εrxi

) ⊂ B(xi, (2 + ε)rxi
) trivially.

Otherwise, if i > m, the maximality of m in our construction implies that B(xi, rxi)
intersects some ball B(xj , rxj ) with j ≤ m. Choosing j to be minimal, we see
that rxj

≥ rxi
. The triangle inequality then implies that xi ∈ B(xj , 2rxj

), and so
B(xi, εrxi

) ⊂ B(xj , (2 + ε)rxj
) as needed.

Using the cover constructed above, we deduce that

m(K) ≤ (2 + ε)d
m∑
j=1

m(B(xi, rxi
)).

By (8), on each ball B(xi, rxi) we have

m(B(xi, rxi
)) <

1

λ

∫
B(xi,rxi

)

|f(y)| dy;

summing in i and using the disjointness of the B(xi, rxi
) for 1 ≤ i ≤ m, we obtain

m(K) ≤ (2 + ε)d

λ

∫
Rd

|f(y)| dy.

Taking the limit as ε→ 0, we conclude that

m({x ∈ Rd : sup
r>0

1

m(B(x, r))

∫
B(x,r)

|f(y)| dy ≥ λ}) ≤ 2d

λ

∫
Rd

|f(t)| dt.

Exercise 1.6.20. Suppose f : Rd → C is absolutely integrable. We establish
the dyadic Hardy–Littlewood maximal inequality

m({x ∈ Rd : sup
x∈Q

1

|Q|

∫
Q

|f(y)| dy ≥ λ}) ≤ 1

λ

∫
Rd

|f(t)| dt,

where the supremum ranges over all dyadic cubes Q =
∏

1≤j≤d[
ij
2n ,

ij+1
2n ) that

contain x. Fix f , λ, and ε. As before, it suffices by inner regularity to prove that

m(K) ≤ 1

λ

∫
Rd

|f(t)| dt

for compact sets K contained in

{x ∈ Rd : sup
x∈Q

1

|Q|

∫
Q

|f(y)| dy ≥ λ}.

By construction, for every x ∈ K, there exists a dyadic cube Qx such that

(9)
1

|Qx|

∫
Qx

|f(y)| dy > λ.

Since open cubes of the form (1 + ε)Q̊x for x ∈ K cover K, compactness gives us a

finite cover (1 + ε)Q̊1, . . . , (1 + ε)Q̊n of K. By the nesting property of dyadic cubes,
the corresponding dyadic cubes Q1, . . . , Qn are either nested or disjoint. As such,
we may discard dyadic cubes that are nested in other dyadic cubes to obtain a
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subcover (1 + ε)Q̊′1, . . . , (1 + ε)Q̊′m of K with Q′1, . . . , Q
′
m disjoint. By (9), we have

|Q′i| < 1
λ

∫
Q′i
|f(y)| dy. Since |Q̊| = |Q|, it follows that

m(K) ≤ (1 + ε)d
m∑
i=1

|Q′i| ≤
(1 + ε)d

λ

∫
Rd

|f(y)| dy,

and the result follows from sending ε→ 0.
Exercise 1.6.21. Let I1, . . . , In be a finite family of open intervals in R (not

necessarily disjoint). We obtain a subfamily where no interval is contained in the
union of the other intervals from the following algorithm, which refines the original
family:

(R1) Set i← 1, J ← {1, . . . , n}.
(R2) If Ii ⊂

⋃
j∈J\{i} Ij , set J ← J \ {i}.

(R3) Set i← i+ 1. If i ≤ n, go to step R2. Otherwise, terminate the algorithm.

The resulting subfamily (Ij)j∈J satisfies
⋃
j∈J Ij =

⋃n
i=1 Ii, since at every iteration

of step R2 where J is modified, we have
⋃
j∈J\{i} Ij =

⋃
j∈J Ij . Intervals contained

in the union of the other intervals are all removed, so no interval is contained in the
union of the other intervals as claimed.

Suppose x is a point contained in three intervals of this subfamily, so that we
have, say, x ∈ Ii ∩ Ij ∩ Ik. We prove that one interval is contained in the union
of the other two intervals. Let l(I) and r(I) denote the left and right endpoints
of an interval I, so that l((a, b)) = a and r((a, b)) = b. Without loss of generality,
we may assume that l(Ii) ≤ l(Ij) ≤ l(Ik). If any of these inequalities are in fact
equalities, then one interval has to be contained in another interval, and so we may
assume l(Ii) < l(Ij) < l(Ik). Then, either Ik ⊂ Ii ∪ Ij , in which case we are done,
or Ik 6⊂ Ii ∪ Ij , in which case we must have r(Ik) > r(Ij). Together with the fact
that l(Ii) < l(Ij), this implies that Ij ⊂ Ii ∪ Ik as needed.

The above argument is rather clunky. Here is another argument, not due to
me. Suppose otherwise, writing the intervals as A,B,C. Then we have points
a ∈ A \ (B ∪ C), and points b and c defined similarly. Without loss of generality,
assume a < b < c. An interval containing two points must also contain the points
between them. If A contains any points a′ ≥ b, then A also contains b, which is
impossible, so A can only contain points to the left of b. Likewise, C can only
contain points to the right of b. Thus A and C are disjoint.

Exercise 1.6.22. Fix f ∈ L1(µ) and λ. As before, by inner regularity, it suffices
to show that

m(K) ≤ 2

λ

∫
R

|f(y)| dµ(y)

whenever K is a compact set that is contained in

{x ∈ R : sup
x∈I

1

µ(I)

∫
I

|f(y)| dµ(y) > λ};

here the supremum is taken over all open intervals containing x. By construction,
for every x ∈ K, there exists an open interval Ix with

1

µ(Ix)

∫
Ix

|f(y)| dµ(y) > λ,

which we may rewrite as

µ(Ix) <
1

λ

∫
Ix

|f(y)| dµ(y).

By compactness, we can cover K by a finite number I1, . . . , In of such open intervals.
Using the one-dimensional Besicovitch covering lemma, we can find a subcollection
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I ′1, . . . , I
′
m, J

′
1, . . . , J

′
l that covers K such that the I ′i are mutually disjoint; likewise

for the J ′j . Thus we have

µ(K) ≤
∑
i

µ(I ′i) +
∑
j

µ(J ′j),

and so

µ(K) ≤
∑
i

1

λ

∫
I′i

|f(y)| dµ(y) +
∑
j

1

λ

∫
J′j

|f(y)| dµ(y) ≤ 2

λ

∫
R

|f(y)| dµ(y)

as needed.
Note that we could not use the Vitali-type covering lemma in the argument above,

since for arbitrary Borel measures on R we cannot guarantee that µ(cI) = cµ(I).
Exercise 1.6.23. Cover [a, b] by open intervals of the form (x, x + δ(x)) for

x ∈ [a, b), together with an interval (a − ε, a + δ(a)) to cover a. Compactness,
together with the Besicovitch covering lemma, gives us a finite cover

(a− ε, a+ δ(a)), (x1, x1 + δ(x1)), . . . , (xn, xn + δ(xn))

of [a, b], where every point is covered by at most two intervals. We discard any interval
that is nested in another interval, which implies that no two xi’s are equal. Thus,
without loss of generality, we may assume a =: x0 < x1 < · · · < xn < xn+1 := b.
We claim that this is our desired partition, where the tags are given by the left
endpoints. Indeed, for 1 ≤ j ≤ n+1, we have xj < xj−1 +δ(xj−1), as xj−1 +δ(xj−1)
must be covered, and we cannot have xi + δ(xi) > xj−1 + δ(xj−1) for i < j − 1, as
this would result in nested intervals. This concludes the proof.

Exercise 1.6.24. Applying the Lebesgue differentiation theorem to the indicator
function 1E , we find that

lim
r→0

m(E ∩B(x, r))

m(B(x, r))
= lim
r→0

1

m(B(x, r))

∫
B(x,r)

1E(y) dy = 1E(x).
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7. Outer measures, pre-measures, and product measures

Exercise 1.7.1. Since A = (A ∩ E) ∪ (A \ E), subadditivity implies that
µ∗(A) ≤ µ∗(A ∩ E) + µ∗(A \ E). Since A ∩ E ⊂ E, monotonicity implies that
µ∗(A ∩ E) ≤ µ∗(E) = 0, so that µ∗(A ∩ E) = 0. It thus suffices to prove that
µ∗(A \ E) ≤ µ∗(A). This follows immediately from monotonicity.

Exercise 1.7.2. If E ⊂ Rd is Carathéodory measurable, then it is Lebesgue
measurable by exercise 1.2.17. Conversely, suppose E ⊂ Rd is Lebesgue measurable.
Then, given any subset A ⊂ Rd, outer regularity gives us a Gδ (countable intersection
of open sets) set H ⊃ A with m(H) = m∗(A). It follows that

m∗(A) = m(H) = m(H ∩ E) +m(H \ E) ≥ m∗(A ∩ E) +m∗(A \ E).

Exercise 1.7.3. The forward implication follows from the fact that a σ-algebra is
closed under countable unions. Conversely, suppose we are given sets B1, B2, . . . ∈ B
that are not necessarily disjoint. Then the sets B′n := Bn \

⋃n−1
i=1 Bi are disjoint, and

they belong to B as Boolean algebras are closed under finite unions and complements.
Since

⋃
nBn =

⋃
nB
′
n, the result follows.

Exercise 1.7.4. (i) Given E1, . . . , En ∈ B0, we let Ek := ∅ for k > n. Then⋃∞
k=1Ek =

⋃n
k=1Ek ∈ B0 as Boolean algebras are closed under finite unions, and

thus

µ0

( n⋃
k=1

Ek

)
= µ0

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

µ0(Ek) =

n∑
k=1

µ0(Ek),

where we have used the hypothesis that µ0(∅) = 0.
(ii) Let E1, E2, . . . ∈ B0 be disjoint sets such that

⋃∞
n=1En ∈ B0. It suffices to

prove that µ0(
⋃∞
n=1En) ≥

∑∞
n=1 µ0(En). By monotonicity and finite additivity, we

have

µ0

( ∞⋃
n=1

En

)
≥ µ0

( N⋃
n=1

En

)
=

N∑
n=1

µ0(En).

Taking the limit as N →∞, it follows that

µ0

( ∞⋃
n=1

En

)
≥
∞∑
n=1

µ0(En).

(iii) We are looking for a countably subadditive map µ : B0 → [0,+∞] that
satisfies µ(∅) = 0 such that there exists a sequence of disjoint sets that fail countable
additivity. My first thought is to define µ(S) := [S is non-empty]. If all the sets En
are empty, then both sides of µ0(

⋃∞
n=1En) ≤

∑∞
n=1 µ0(En) are zero, so we are fine.

Otherwise, at least one of the sets En is non-empty, and so the left-hand side is one,
whereas the right-hand side is at least one, so we have verified that our example
works (in particular, if all our sets are disjoint and non-empty, we get 1 �∞; finite
additivity fails similarly).

Exercise 1.7.5. By Lemma 1.2.6, elementary measure agrees with Lebesgue
outer measure on elementary sets, so that m(

⋃∞
n=1En) ≤

∑∞
n=1m(En), where the

En are disjoint elementary sets and we have denoted by m the elementary measure.
The result then follows follows for elementary sets from exercise 1.7.4(ii), and the
general case where co-elementary sets are allowed follows since such sets have infinite
measure, and so the inequality holds trivially.

Exercise 1.7.6. We are looking for a finitely additive measure µ0 : 2N → [0,+∞]
that is not a pre-measure. By exercise 1.7.4(ii), such a measure must satisfy
µ0(
⋃∞
n=1En) >

∑∞
n=1 µ0(En) for some sets En ∈ 2N. Now the temptation is to
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define µ0(S) := [S is an infinite set]. Setting En := {n}, we get

µ0

( ∞⋃
n=1

En

)
= µ(N) = 1 > 0 =

∞∑
n=1

µ0(En).

Since finite unions of finite sets are finite sets, finite additivity holds.
Exercise 1.7.7. Let E ∈ B′. We first prove that µ′(E) ≤ µ∗(E). By definition,

it suffices to show that µ′(E) ≤
∑∞
n=1 µ0(En) whenever E ⊂

⋃∞
n=1En for some sets

En ∈ B0. We compute

µ′(E) ≤ µ′
( ∞⋃
n=1

En

)
≤
∞∑
n=1

µ′(En) =

∞∑
n=1

µ0(En).

Now suppose E ∈ B ∩ B′. We have shown that µ∗(E) ≥ µ′(E), so it remains to
be shown that µ∗(E) ≤ µ′(E). Suppose first that µ∗(E) < ∞. Let ε > 0. There
exist sets En ∈ B0 such that E ⊂

⋃∞
n=1En and

∑∞
n=1 µ0(En) ≤ µ∗(E) + ε/2. Since

µ∗(E) < ∞, we may apply monotone convergence to choose large N for which

µ∗(E) ≤ µ0(
⋃N
n=1En) + ε/2 = µ′(

⋃N
n=1En) + ε/2. Note that

µ∗
( ∞⋃
n=1

En

)
≤
∞∑
n=1

µ∗(En) =

∞∑
n=1

µ0(En) ≤ µ∗(E) + ε/2.

Since µ′ ≤ µ∗ as we showed earlier, we have

µ′
( ∞⋃
n=1

En \ E
)
≤ µ∗

( ∞⋃
n=1

En \ E
)
≤ ε/2,

so that

µ′
( ∞⋃
n=1

En

)
≤ µ′(E) + ε/2.

It follows that

µ∗(E) ≤ µ′
( N⋃
n=1

En

)
+ ε/2

≤ µ′
( ∞⋃
n=1

En

)
+ ε/2

≤ µ′(E) + ε

as needed. Now suppose µ∗(E) = ∞. Since µ0 is assumed to be σ-finite on the
space X, we may write X =

⋃∞
n=1Xn for disjoint Xn with µ0(Xn) <∞. Then

µ′(E) ≥ µ′
(
E ∩

N⋃
n=1

Xn

)
≥ µ∗

(
E ∩

N⋃
n=1

Xn

)
,

and the result follows from sending N →∞.
Exercise 1.7.8. (i) The map µ0 is finitely additive since the union of sets is

non-empty iff at least one set is non-empty. The other condition holds for the same
reason, and so µ0 is a pre-measure.

(ii) By exercise 1.4.14, the Borel σ-algebra B[R] is generated by open balls, and
so it suffices to show that every σ-algebra containing A contains the open balls in
R, and vice versa. This follows from how

(a, b) =

∞⋃
n=1

[a+ 1/n, b)
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and

[a, b) =

∞⋂
n=1

(a− 1/n, b).

(iii) We now consider the Hahn–Kolmogorov extension µ : B[R]→ [0,+∞] of µ0.
By definition, we have

µ∗(E) := inf
{ ∞∑
n=1

µ0(En) : E ⊂
∞⋃
n=1

En; where En ∈ B0 for all n
}
.

In particular, if E is a non-empty Borel set, then one of the sets Ek in any of its
covers must be non-empty, and so

∑
n µ0(En) ≥ µ0(Ek) =∞. Thus µ(E) =∞.

(iv) Since finite unions of half-open intervals always contain infinitely many points,
we see that the counting measure # agrees with µ0, and thus extends it. But #
disagrees with the Hahn–Kolmogorov extension µ on finite non-empty sets, and so
we conclude that the σ-finite hypothesis of exercise 1.7.7 was necessary.

Exercise 1.7.9. (i) Let E ∈ B. Given n ≥ 1, there exist sets Fn,1, Fn,2, . . . ∈ B0

such that E ⊂
⋃∞
m=1 Fn,m =: Fn and

∑∞
m=1 µ0(Fn,m) ≤ µ∗(E) + 1/n. [To do. . . ]

Exercise 1.7.18. (i) We must show that the generators of BX × BY generate
the generators of the σ-algebra given in this problem, and vice versa. Since X ∈ BX
and Y ∈ BY , we have

BX × BY ⊂ 〈E × F : E ∈ BX , F ∈ BY 〉.

Conversely, suppose E ∈ BX and F ∈ BY . Then

E × F = E × Y ∩X × F,

and so we conclude that

BX × BY = 〈E × F : E ∈ BX , F ∈ BY 〉.

(ii) What it means for πX : X × Y → X to be a measurable morphism is that
π−1
X (E) ∈ BX × BY whenever E ∈ BX ; similarly for πY . We defined BX × BY

so that this would be true; thus we see that πX is a measurable morphism. Now
suppose Z is a σ-algebra on X × Y that makes the projection maps πX and πY
both measurable morphisms. Then, we must show that BX × BY is coarser than Z;
that is, the identity map idX×Y : (X × Y,Z)→ (X × Y,BX × BY ) is a measurable
morphism. So suppose that E × F ∈ BX × BY . We must prove that E × F ∈ Z.
Since πX : (X×Y,Z)→ (X,BX) is a measurable morphism, the set π−1

X (E) = E×Y
belongs to Z. Similarly, we have π−1

Y (F ) = X × F ∈ Z. Since Z is a σ-algebra, we
conclude that

E × F = E × Y ∩X × F ∈ Z

as desired.
(iii) We proceed via structural induction, following remark 1.4.15. We take

BX × BY to be generated by sets of the form E × F with E ∈ BX and F ∈ BY ,
following (i) above. The claim holds trivially for the empty set. Given E × F ∈
BX × BY and x ∈ X, the set (E × F )x = {y ∈ Y : (x, y) ∈ E × F} is either F or
∅, depending on whether x ∈ E, and in either case it lies in BY . Now suppose the
claim holds for some E ∈ BX × BY . Then, we see that

((X × Y ) \ E)x = {y ∈ Y : (x, y) ∈ (X × Y ) \ E}
= Y \ Ex,
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which belongs to BY as needed. Finally, suppose the claim holds for E1, E2, . . . ∈
BX × BY . Then ( ∞⋃

n=1

En

)
x

=
{
y ∈ Y : (x, y) ∈

∞⋃
n=1

En

}
=

∞⋃
n=1

(En)x,

which belongs to BY as σ-algebras are closed under countable unions. Structural
induction allows us to conclude that we have Ex ∈ BY whenever E ∈ BX ×BY . The
claim for Ey ∈ BX is proven analogously.

(iv) Let x ∈ X, and let U ⊂ [0,+∞] be Lebesgue measurable. Since

f−1(U) = {(x′, y′) ∈ X × Y : f(x′, y′) ∈ U} ∈ BX × BY
by hypothesis, we have

f−1
x (U) = {y ∈ Y : f(x, y) ∈ U} = (f−1(U))x,

where we have used the notation of (iii). Thus (iii) implies that (f−1(U))x ∈ BY ,
and the result follows.

Exercise 1.7.19. (i) Let (X,BX) and (Y,BY ) be measurable spaces with trivial
σ-algebras. Then we may compute the product σ-algebra

BX × BY := 〈π∗X(BX) ∪ π∗Y (BY )〉 = 〈{∅× Y,X ×∅, X × Y }〉 = {∅, X × Y },
which is the trivial σ-algebra on X × Y .

(ii) This is false, see https://math.stackexchange.com/q/1148938/.
(iii) The product of two finite σ-algebras is a σ-algebra generated by a finite set

and is thus finite — indeed, if the generating set has n elements, the σ-algebra it
generates is equal to the Boolean algebra it generates, and thus has at most 22n

elements by exercise 1.4.8.
(iv) We must show that every product of Borel sets from Rd and Rd′ is a Borel

set in Rd+d′ . This follows from exercise 1.4.17. We must also show that every Borel
set E in Rd+d′ is generated from the Borel σ-algebras of Rd and Rd′ . By exercise
1.4.14, it suffices to show that every box in Rd+d′ is the product of boxes from Rd

and Rd′ ; this is clear.
(v) Suppose for contradiction that the product of the Lebesgue σ-algebras on

two copies of R is equal to the Lebesgue σ-algebra on R2. Then exercise 1.7.18(iii)
implies that any slice of a Lebesgue measurable set is Lebesgue measurable — but
the product of a non-measurable subset of R with a point is a null subset of R2,
and is thus Lebesgue measurable.

(vi) I haven’t checked, but this should follow from how the Lebesgue measure
space (Rd,L[Rd],m) is the completion of the Borel measure space (Rd,B[Rd],m)
(see exercise 1.4.27).

Exercise 1.7.20. (i) Let x ∈ X and let B be a Boolean algebra on X. Recall
that the Dirac measure δx at x is a finitely additive measure defined by setting
δx(E) := 1E(x). Let (X,BX) and (Y,BY ) be measurable spaces, and let x ∈ X
and y ∈ Y . Then (X,BX , δx) and (Y,BY , δy) are σ-finite measure spaces (because
δx(X) = 1 for example), and thus Proposition 1.7.11 implies the existence of a
unique product measure δx×δy on BX×BY that obeys δx×δy(E×F ) = δx(E)δy(F ).
We then compute

δx(E)δy(F ) = 1E(x)1F (y) = 1E×F ((x, y)) = δ(x,y)(E × F ),

as desired.
(ii) Suppose X and Y are at most countable sets, and let (X,BX ,#X) and

(Y,BY ,#Y ) be measure spaces. The cardinality hypotheses on X and Y ensure that

https://math.stackexchange.com/q/1148938/
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their associated measure spaces are σ-finite; indeed, take X =
⋃
x∈X{x}. As such, we

may apply Proposition 1.7.11 to obtain a unique measure #X×#Y on BX×BY which
satisfies #X ×#Y (E ×F ) = #X(E)#Y (F ). Since #X(E)#Y (F ) = #X×Y (E ×F ),
the result follows.
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